Todd L. Rosenblat
Memorial Sloan Kettering Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Todd L. Rosenblat.
Science Translational Medicine | 2013
Renier J. Brentjens; Marco L. Davila; Isabelle Riviere; Jae Park; Xiuyan Wang; Lindsay G. Cowell; Shirley Bartido; Jolanta Stefanski; Clare Taylor; Malgorzata Olszewska; Oriana Borquez-Ojeda; Jinrong Qu; Teresa Wasielewska; Qing He; Yvette Bernal; Ivelise Rijo; Cyrus V. Hedvat; Rachel Kobos; Kevin J. Curran; Peter G. Steinherz; Joseph G. Jurcic; Todd L. Rosenblat; P. Maslak; Mark G. Frattini; Michel Sadelain
Five adults with chemotherapy-refractory B-ALL were induced into molecular remissions after treatment with CD19 CAR-targeted T cells. CARving a Niche for Cancer Immunotherapy Acute lymphoblastic leukemia (ALL) is a cancer of the white blood cells that fend off infection. It’s most common in children but—as with many diseases that primarily affect children—has a much worse prognosis when it affects adults. Adults with relapsed disease have a very low chance of survival, and new therapies are desperately needed. Now, Brentjens et al. test T cells engineered to target CD19, which is expressed on both healthy B lymphocytes and B-ALL cells, in five chemotherapy-refractory adult B-ALL patients. Here, the authors treat patients with the patients’ own T cells altered to express not only CD19 but also a fusion of the costimulatory molecule CD28 with CD3ζ chain—so-called “second-generation chimeric antigen receptor (CAR) T cells.” All patients treated with these cells achieved tumor eradication and complete remission. These CAR T cells were well tolerated, although there was substantial cytokine release in some patients that correlated to tumor burden. These patients were treated with steroid therapy. Long-term follow-up in four of these patients was not possible because the CAR T cell therapy allowed these patients to be eligible for subsequent hematopoietic stem cell transplant (HSCT), which resulted in restored hematopoiesis. The remaining patient experienced a relapse of CD19+ cells that coincided with the lack of persistence of the CAR T cells from circulation. These data suggest that subsequent transfusions should be considered for patients unable to undergo HSCT. Adults with relapsed B cell acute lymphoblastic leukemia (B-ALL) have a dismal prognosis. Only those patients able to achieve a second remission with no minimal residual disease (MRD) have a hope for long-term survival in the context of a subsequent allogeneic hematopoietic stem cell transplantation (allo-HSCT). We have treated five relapsed B-ALL subjects with autologous T cells expressing a CD19-specific CD28/CD3ζ second-generation dual-signaling chimeric antigen receptor (CAR) termed 19-28z. All patients with persistent morphological disease or MRD+ disease upon T cell infusion demonstrated rapid tumor eradication and achieved MRD− complete remissions as assessed by deep sequencing polymerase chain reaction. Therapy was well tolerated, although significant cytokine elevations, specifically observed in those patients with morphologic evidence of disease at the time of treatment, required lymphotoxic steroid therapy to ameliorate cytokine-mediated toxicities. Indeed, cytokine elevations directly correlated to tumor burden at the time of CAR-modified T cell infusions. Tumor cells from one patient with relapsed disease after CAR-modified T cell therapy, who was ineligible for additional allo-HSCT or T cell therapy, exhibited persistent expression of CD19 and sensitivity to autologous 19-28z T cell–mediated cytotoxicity, which suggests potential clinical benefit of additional CAR-modified T cell infusions. These results demonstrate the marked antitumor efficacy of 19-28z CAR-modified T cells in patients with relapsed/refractory B-ALL and the reliability of this therapy to induce profound molecular remissions, forming a highly effective bridge to potentially curative therapy with subsequent allo-HSCT.
Blood | 2011
Jae H. Park; Baozhen Qiao; Katherine S. Panageas; Maria J. Schymura; Joseph G. Jurcic; Todd L. Rosenblat; Jessica K. Altman; Dan Douer; Jacob M. Rowe; Martin S. Tallman
The incidence of early death in a large population of unselected patients with acute promyelocytic leukemia (APL) remains unknown because of the paucity of outcome data available for patients treated outside of clinical trials. We undertook an epidemiologic study to estimate the true rate of early death with data from the Surveillance, Epidemiology, and End Results (SEER) program. A total of 1400 patients with a diagnosis of APL between 1992 and 2007 were identified. The overall early death rate was 17.3%, and only a modest change in early death rate was observed over time. The early death rate was significantly higher in patients aged ≥ 55 years (24.2%; P < .0001). The 3-year survival improved from 54.6% to 70.1% over the study period but was significantly lower in patients aged ≥ 55 years (46.4%; P < .0001). This study shows that the early death rate remains high despite the wide availability of all-trans retinoic acid and appears significantly higher than commonly reported in multicenter clinical trials. These data highlight a need to educate health care providers across a wide range of medical fields, who may be the first to evaluate patients with APL, to have a major effect on early death and the cure rate of APL.
Clinical Cancer Research | 2010
Todd L. Rosenblat; Michael R. McDevitt; Deborah A. Mulford; Neeta Pandit-Taskar; Chaitanya R. Divgi; Katherine S. Panageas; Mark L. Heaney; Suzanne Chanel; Alfred Morgenstern; George Sgouros; Steven M. Larson; David A. Scheinberg; Joseph G. Jurcic
Purpose: Lintuzumab (HuM195), a humanized anti-CD33 antibody, targets myeloid leukemia cells and has modest single-agent activity against acute myeloid leukemia (AML). To increase the potency of the antibody without the nonspecific cytotoxicity associated with β-emitters, the α-particle–emitting radionuclide bismuth-213 (213Bi) was conjugated to lintuzumab. This phase I/II trial was conducted to determine the maximum tolerated dose (MTD) and antileukemic effects of 213Bi-lintuzumab, the first targeted α-emitter, after partially cytoreductive chemotherapy. Experimental Design: Thirty-one patients with newly diagnosed (n = 13) or relapsed/refractory (n = 18) AML (median age, 67 years; range, 37-80) were treated with cytarabine (200 mg/m2/d) for 5 days followed by 213Bi-lintuzumab (18.5-46.25 MBq/kg). Results: The MTD of 213Bi-lintuzumab was 37 MB/kg; myelosuppression lasting >35 days was dose limiting. Extramedullary toxicities were primarily limited to grade ≤2 events, including infusion-related reactions. Transient grade 3/4 liver function abnormalities were seen in five patients (16%). Treatment-related deaths occurred in 2 of 21 (10%) patients who received the MTD. Significant reductions in marrow blasts were seen at all dose levels. The median response duration was 6 months (range, 2-12). Biodistribution and pharmacokinetic studies suggested that saturation of available CD33 sites by 213Bi-lintuzumab was achieved after partial cytoreduction with cytarabine. Conclusions: Sequential administration of cytarabine and 213Bi-lintuzumab is tolerable and can produce remissions in patients with AML. Clin Cancer Res; 16(21); 5303–11. ©2010 AACR.
Journal of Clinical Oncology | 2014
Gail J. Roboz; Todd L. Rosenblat; Martha Arellano; Marco Gobbi; Jessica K. Altman; Pau Montesinos; Casey O'Connell; Scott R. Solomon; Arnaud Pigneux; Norbert Vey; Robert Kerrin Hills; Tove Flem Jacobsen; Athos Gianella-Borradori; Oivind Foss; Sylvia Vetrhusand; Francis J. Giles
PURPOSE Most patients with acute myeloid leukemia (AML) eventually experience relapse. Relapsed/refractory AML has a dismal prognosis and currently available treatment options are generally ineffective. The objective of this large, international, randomized clinical trial was to investigate the efficacy of elacytarabine, a novel elaidic acid ester of cytarabine, versus the investigators choice of one of seven commonly used AML salvage regimens, including high-dose cytarabine, multiagent chemotherapy, hypomethylating agents, hydroxyurea, and supportive care. PATIENTS AND METHODS A total of 381 patients with relapsed/refractory AML were treated in North America, Europe, and Australia. Investigators selected a control treatment for individual patients before random assignment. The primary end point was overall survival (OS). RESULTS There were no significant differences in OS (3.5 v 3.3 months), response rate (23% v 21%), or relapse-free survival (5.1 v 3.7 months) between the elacytarabine and control arms, respectively. There was no significant difference in OS among any of the investigators choice regimens. Prolonged survival was only achieved in a few patients in both study arms whose disease responded and who underwent allogeneic stem-cell transplantation. CONCLUSION Neither elacytarabine nor any of the seven alternative treatment regimens provided clinically meaningful benefit to these patients. OS in both study arms and for all treatments was extremely poor. Novel agents, novel clinical trial designs, and novel strategies of drug development are all desperately needed for this patient population.
Leukemia Research | 2013
Jessica K. Altman; Alfred Rademaker; Elizabeth H. Cull; Bing Bing Weitner; Yishai Ofran; Todd L. Rosenblat; Augustin Haidau; Jae H. Park; Sharona Ram; James Orsini; Sonia Sandhu; Rosalind Catchatourian; Steven Trifilio; Nelly G. Adel; Olga Frankfurt; Eytan M. Stein; George Mallios; Tony DeBlasio; Joseph G. Jurcic; Stephen D. Nimer; LoAnn Peterson; Hau C. Kwaan; Jacob M. Rowe; Dan Douer; Martin S. Tallman
We hypothesized that the high early death rate (EDR) due to bleeding in acute promyelocytic leukemia (APL) is in part attributable to delays in all- trans retinoic acid (ATRA). We conducted a retrospective analysis of the timing of ATRA administration. 204 consecutive patients with newly diagnosed APL between 1992 and 2009 were identified. The EDR was 11%. 44% of early deaths occurred in the first week. Hemorrhage accounted for 61% of early deaths. ATRA was ordered the day APL was suspected in 31% of patients. Delays in ATRA administration led to increases in the percentage of early deaths from hemorrhage.
American Society of Clinical Oncology educational book / ASCO. American Society of Clinical Oncology. Meeting | 2014
Joseph G. Jurcic; Todd L. Rosenblat
Because alpha-particles have a shorter range and a higher linear energy transfer (LET) compared with beta-particles, targeted alpha-particle immunotherapy offers the potential for more efficient tumor cell killing while sparing surrounding normal cells. To date, clinical studies of alpha-particle immunotherapy for acute myeloid leukemia (AML) have focused on the myeloid cell surface antigen CD33 as a target using the humanized monoclonal antibody lintuzumab. An initial phase I study demonstrated the safety, feasibility, and antileukemic effects of bismuth-213 ((213)Bi)-labeled lintuzumab. In a subsequent study, (213)Bi-lintuzumab produced remissions in some patients with AML after partial cytoreduction with cytarabine, suggesting the utility of targeted alpha-particle therapy for small-volume disease. The widespread use of (213)Bi, however, is limited by its short half-life. Therefore, a second-generation construct containing actinium-225 ((225)Ac), a radiometal that generates four alpha-particle emissions, was developed. A phase I trial demonstrated that (225)Ac-lintuzumab is safe at doses of 3 μCi/kg or less and has antileukemic activity across all dose levels studied. Fractionated-dose (225)Ac-lintuzumab in combination with low-dose cytarabine (LDAC) is now under investigation for the management of older patients with untreated AML in a multicenter trial. Preclinical studies using (213)Bi- and astatine-211 ((211)At)-labeled anti-CD45 antibodies have shown that alpha-particle immunotherapy may be useful as part conditioning before hematopoietic cell transplantation. The use of novel pretargeting strategies may further improve target-to-normal organ dose ratios.
Lancet Oncology | 2017
Hagop M. Kantarjian; Gail J. Roboz; Patricia Kropf; Karen Yee; Casey O'Connell; Raoul Tibes; Katherine Walsh; Nikolai A. Podoltsev; Elizabeth A. Griffiths; Elias Jabbour; Guillermo Garcia-Manero; David A. Rizzieri; Wendy Stock; Michael R. Savona; Todd L. Rosenblat; Jesus G. Berdeja; Farhad Ravandi; Edwin P. Rock; Yong Hao; Mohammad Azab; Jean-Pierre Issa
BACKGROUND The hypomethylating drugs azacitidine and decitabine have shown efficacy in myelodysplastic syndromes and acute myeloid leukaemia, but complete tumour responses are infrequent and of short duration, possibly because of the short half-lives and suboptimal bone marrow exposure of the drugs. Guadecitabine, a next-generation hypomethylating drug, has a longer half-life and exposure than its active metabolite decitabine. A phase 1 study established 60 mg/m2 guadecitabine for 5 days as an effective treatment schedule. In this phase 2 study, we aimed to assess the safety and activity of two doses and schedules of guadecitabine in older (≥65 years) patients with treatment-naive acute myeloid leukaemia who were not candidates for intensive chemotherapy. METHODS We did a multicentre, randomised, open-label, phase 1/2 study of guadecitabine in cohorts of patients with treatment-naive acute myeloid leukaemia, relapsed or refractory acute myeloid leukaemia, and myelodysplastic syndromes; here we report the phase 2 results from the cohort of treatment-naive patients with acute myeloid leukaemia. We included patients aged at least 65 years from 14 US medical centres (hospitals and specialist cancer clinics) who were not candidates for intensive chemotherapy and randomly assigned them (1:1) using a computer algorithm (for dynamic randomisation) to guadecitabine 60 or 90 mg/m2 on days 1-5 (5-day schedule) of a 28-day treatment cycle. Treatment allocation was not masked. We also assigned additional patients to guadecitabine 60 mg/m2 in a 10-day schedule in a 28-day treatment cycle after a protocol amendment. The primary endpoint was composite complete response (complete response, complete response with incomplete platelet recovery, or complete response with incomplete neutrophil recovery regardless of platelets). Response was assessed in all patients (as-treated) who received at least one dose of guadecitabine. We present the final analysis, although at the time of the database lock, 15 patients were still in follow-up for overall survival. This study is registered with ClinicalTrials.gov, number NCT01261312. FINDINGS Between Aug 24, 2012, and Sept 15, 2014, 107 patients were enrolled: 54 on the 5-day schedule (26 randomly assigned to 60 mg/m2 and 28 to 90 mg/m2) and 53 were assigned to the 10-day schedule. Median age was 77 years (range 62-92), and median follow-up was 953 days (IQR 721-1040). All treated patients were assessable for a response. The number of patients who achieved a composite complete response did not differ between dose groups or schedules (13 [54%, 95% CI 32·8-74·4] with 60 mg/m2 on the 5-day schedule; 16 [59%; 38·8-77·6] with 90 mg/m2 on the 5-day schedule; and 26 [50%, 35·8-64·2] with 60 mg/m2 on the 10-day schedule). The most frequent grade 3 or worse adverse events, regardless of relationship to treatment, were febrile neutropenia (31 [61%] of 51 patients on the 5-day schedule vs 36 [69%] of 52 patients on the 10-day schedule), thrombocytopenia (25 [49%] vs 22 [42%]), neutropenia (20 [39%] vs 18 [35%]), pneumonia (15 [29%] vs 19 [37%]), anaemia (15 [29%] vs 12 [23%]), and sepsis (eight [16%] vs 14 [27%]). The most common serious adverse events, regardless of relationship to treatment, for the 5-day and 10-day schedules, respectively, were febrile neutropenia (27 [53%] vs 25 [48%]), pneumonia (14 [27%] vs 16 [31%]), and sepsis (eight [16%] vs 14 [27%]). 23 (22%) patients died because of adverse events (mainly from sepsis, eight [8%]; and pneumonia, five [5%]); four deaths were from adverse events deemed treatment-related (pneumonia, two [2%]; multiorgan failure, one [1%]; and sepsis, one [1%], all in the 10-day cohort). INTERPRETATION More than half of older treatment-naive patients with acute myeloid leukaemia achieved a composite complete response with guadecitabine at all drug doses and schedules investigated, with tolerable toxicity. The recommended guadecitabine regimen for this population is 60 mg/m2 in a 5-day schedule. A phase 3 study in this patient population is ongoing (NCT02348489) to assess guadecitabine 60 mg/m2 in a 5-day schedule versus standard of care. FUNDING Astex Pharmaceuticals and Stand Up To Cancer.
Therapeutic advances in hematology | 2011
Jae Park; Joseph G. Jurcic; Todd L. Rosenblat; Martin S. Tallman
The introduction of all-trans retinoic acid (ATRA) in the late 1980s combined with anthracycline-based chemotherapy has revolutionized the prognosis of acute promyelocytic leukemia (APL) with more than 90% complete response rates and cure rates of approximately 80%. The subsequent advent of arsenic trioxide (ATO) in 1990s and progress in the treatment of APL have changed its course from a highly fatal to a highly curable disease. Despite the dramatic improvement in clinical outcome of APL, treatment failure still occurs due most often to early death. Relapse has become increasingly less frequent, most commonly occurring in patients with high-risk disease. A major focus of research for the past decade has been to develop risk-adapted and rationally targeted nonchemotherapy treatment strategies to reduce treatment-related morbidity and mortality to low- and intermediate-risk or older patients while targeting more intensive or alternative therapy to those patients at most risk of relapse. In this review, emerging new approaches to APL treatment with special emphasis on strategies to reduce early deaths, risk-adapted therapy during induction, consolidation and maintenance, as well as an overview of current and future clinical trials in APL will be discussed.
Blood Advances | 2018
Peter Maslak; Tao Dao; Yvette Bernal; Suzanne Chanel; Rong Zhang; Mark G. Frattini; Todd L. Rosenblat; Joseph G. Jurcic; Renier J. Brentjens; Maria E. Arcila; Raajit Rampal; Jae H. Park; Dan Douer; Laura Katz; Nicholas Sarlis; Martin S. Tallman; David A. Scheinberg
A National Cancer Institute consensus study on prioritization of cancer antigens ranked the Wilms tumor 1 (WT1) protein as the top immunotherapy target in cancer. We previously reported a pilot study of a multivalent WT1 peptide vaccine (galinpepimut-S) in acute myeloid leukemia (AML) patients. We have now conducted a phase 2 study investigating this vaccine in adults with AML in first complete remission (CR1). Patients received 6 vaccinations administered over 10 weeks with the potential to receive 6 additional monthly doses if they remained in CR1. Immune responses (IRs) were evaluated after the 6th and 12th vaccinations by CD4+ T-cell proliferation, CD8+ T-cell interferon-γ secretion (enzyme-linked immunospot), or the CD8-relevant WT1 peptide major histocompatibility complex tetramer assay (HLA-A*02 patients only). Twenty-two patients (7 males; median age, 64 years) were treated. Fourteen patients (64%) completed ≥6 vaccinations, and 9 (41%) received all 12 vaccine doses. Fifteen patients (68%) relapsed, and 10 (46%) died. The vaccine was well tolerated, with the most common toxicities being grade 1/2 injection site reactions (46%), fatigue (32%), and skin induration (32%). Median disease-free survival from CR1 was 16.9 months, whereas the overall survival from diagnosis has not yet been reached but is estimated to be ≥67.6 months. Nine of 14 tested patients (64%) had an IR in ≥1 assay (CD4 or CD8). These results indicated that the WT1 vaccine was well tolerated, stimulated a specific IR, and was associated with survival in excess of 5 years in this cohort of patients. This trial was registered at www.clinicaltrials.gov as #NCT01266083.
Clinical Radiation Oncology (Fourth Edition) | 2016
Joseph G. Jurcic; Jeffrey Y.C. Wong; Susan Knox; Daniel R. Wahl; Todd L. Rosenblat; Ruby F. Meredith
Targeted radionuclide therapy (TRT) seeks molecular and functional targets within patient tumor sites. A number of agents have been constructed and labeled with beta, alpha, and Auger emitters. Radionuclide carriers spanning a broad range of sizes; e.g., antibodies, liposomes, and constructs such as nanoparticles have been used in these studies. Uptake, in percent-injected dose per gram of malignant tissue, is used to evaluate the specificity of the targeting vehicle. Lymphoma (B-cell) has been the primary clinical application. Extension to solid tumors will require raising the macroscopic absorbed dose by several-fold over values found in present technology. Methods that may effect such changes include multistep targeting, simultaneous chemotherapy, and external sequestration of the agent. Toxicity has primarily involved red marrow so that marrow replacement can also be used to enhance future TRT treatments. Correlation of toxicities and treatment efficiency has been limited by relatively poor absorbed dose estimates partly because of using standard (phantom) organ sizes. These associations will be improved in the future by obtaining patient-specific organ size and activity data with hybrid SPECT/CT and PET/CT scanners.