Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Todd M. Hoefen is active.

Publication


Featured researches published by Todd M. Hoefen.


Journal of Geophysical Research | 2000

Detection of Crystalline Hematite Mineralization on Mars by the Thermal Emission Spectrometer: Evidence for Near-surface Water

Philip R. Christensen; Joshua L. Bandfield; Roger N. Clark; Kenneth S. Edgett; Victoria E. Hamilton; Todd M. Hoefen; Hugh H. Kieffer; Ruslan O. Kuzmin; Melissa D. Lane; M. C. Malin; Richard V. Morris; John C. Pearl; R. Pearson; Ted L. Roush; Steven W. Ruff; Michael D. Smith

The Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor (MGS) mission has discovered a remarkable accumulation of crystalline hematite (a-Fe2O3) that covers an area with very sharp boundaries approximately 350 by 350 -750 km in size centered near 28S latitude between 08 and 58W longitude (Sinus Meridiani). Crystalline hematite is uniquely identified by the presence of fundamental vibrational absorption features centered near 300, 450, and .525 cm21 and by the absence of silicate fundamentals in the 1000 cm 21 region. Spectral features resulting from atmospheric CO 2, dust, and water ice were removed using a radiative transfer model. The spectral properties unique to Sinus Meridiani were emphasized by removing the average spectrum of the surrounding region. The depth and shape of the hematite fundamental bands show that the hematite is crystalline and relatively coarse grained (.5-10 mm). Diameters up to and greater than hundreds of micrometers are permitted within the instrumental noise and natural variability of hematite spectra. Hematite particles ,5-10 mm in diameter (as either unpacked or hard-packed powders) fail to match the TES spectra. The spectrally derived areal abundance of hematite varies with particle size from ;10% (.30 mm diameter) to 40 - 60% (10 mm diameter). The hematite in Sinus Meridiani is thus distinct from the fine-grained (diameter ,5-10 mm), red, crystalline hematite considered, on the basis of visible, near-IR data, to be a minor spectral component in Martian bright regions like Olympus-Amazonis. Sinus Meridiani hematite is closely associated with a smooth, layered, friable surface that is interpreted to be sedimentary in origin. This material may be the uppermost surface in the region, indicating that it might be a late stage sedimentary unit or a layered portion of the heavily cratered plains units. We consider five possible mechanisms for the formation of coarse- grained, crystalline hematite. These processes fall into two classes depending on whether they require a significant amount of near-surface water: the first is chemical precipitation that includes origin by (1) precipitation from standing, oxygenated, Fe-rich water (oxide iron formations), (2) precipitation from Fe-rich hydrothermal fluids, (3) low-temperature dissolution and precipitation through mobile ground water leaching, and (4) formation of surface coatings, and the second is thermal oxidation of magnetite-rich lavas. Weathering and alteration processes, which produce nanophase and red hematite, are not consistent with the coarse, crystalline hematite observed in Sinus Meridiani. We prefer chemical precipitation models and favor precipitation from Fe-rich water on the basis of the probable association with sedimentary materials, large geographic size, distance from a regional heat source, and lack of evidence for extensive groundwater processes elsewhere on Mars. The TES results thus provide mineralogic evidence for probable large-scale water interactions. The Sinus Meridiani region may be an ideal candidate for future landed missions searching for biotic and prebiotic environments, and the physical characteristics of this site satisfy all of the engineering requirements for the missions currently planned.


American Mineralogist | 2003

The Composition and Morphology of Amphiboles from the Rainy Creek Complex, Near Libby, Montana

Gregory P. Meeker; A.M. Bern; I.K. Brownfield; H.A. Lowers; Steve J. Sutley; Todd M. Hoefen; J.S. Vance

Abstract Thirty samples of amphibole-rich rock from the largest mined vermiculite deposit in the world in the Rainy Creek alkaline-ultramafic complex near Libby, Montana, were collected and analyzed. The amphibole-rich rock is the suspected cause of an abnormally high number of asbestos-related diseases reported in the residents of Libby, and in former mine and mill workers. The amphibole-rich samples were analyzed to determine composition and morphology of both fibrous and non-fibrous amphiboles. Sampling was carried out across the accessible portions of the deposit to obtain as complete a representation of the distribution of amphibole types as possible. The range of amphibole compositions, determined from electron probe microanalysis and X-ray diffraction analysis, indicates the presence of winchite, richterite, tremolite, and magnesioriebeckite. The amphiboles from Vermiculite Mountain show nearly complete solid solution between these end-member compositions. Magnesio-arfvedsonite and edenite may also be present in low abundance. An evaluation of the textural characteristics of the amphiboles shows the material to include a complete range of morphologies from prismatic crystals to asbestiform fibers. The morphology of the majority of the material is intermediate between these two varieties. All of the amphiboles, with the possible exception of magnesioriebeckite, can occur in fibrous or asbestiform habit. The Vermiculite Mountain amphiboles, even when originally present as massive material, can produce abundant, extremely fine fibers by gentle abrasion or crushing.


Nature | 2005

Compositional maps of Saturn's moon Phoebe from imaging spectroscopy

Roger N. Clark; Robert H. Brown; R. Jaumann; Dale P. Cruikshank; Robert M. Nelson; Bonnie J. Buratti; Thomas B. McCord; Jonathan I. Lunine; Kevin H. Baines; G. Bellucci; Jean-Pierre Bibring; F. Capaccioni; P. Cerroni; Angioletta Coradini; V. Formisano; Yves Langevin; Dennis L. Matson; V. Mennella; P. D. Nicholson; Bruno Sicardy; Christophe Sotin; Todd M. Hoefen; John Curchin; Gary B. Hansen; Karl Hibbits; Klaus-Dieter Matz

The origin of Phoebe, which is the outermost large satellite of Saturn, is of particular interest because its inclined, retrograde orbit suggests that it was gravitationally captured by Saturn, having accreted outside the region of the solar nebula in which Saturn formed. By contrast, Saturns regular satellites (with prograde, low-inclination, circular orbits) probably accreted within the sub-nebula in which Saturn itself formed. Here we report imaging spectroscopy of Phoebe resulting from the Cassini–Huygens spacecraft encounter on 11 June 2004. We mapped ferrous-iron-bearing minerals, bound water, trapped CO2, probable phyllosilicates, organics, nitriles and cyanide compounds. Detection of these compounds on Phoebe makes it one of the most compositionally diverse objects yet observed in our Solar System. It is likely that Phoebes surface contains primitive materials from the outer Solar System, indicating a surface of cometary origin.


PLOS ONE | 2016

Trace Elements in Stormflow, Ash, and Burned Soil following the 2009 Station Fire in Southern California

Carmen A. Burton; Todd M. Hoefen; Geoffrey S. Plumlee; Katherine L. Baumberger; Adam R. Backlin; Elizabeth Gallegos; Robert N. Fisher

Most research on the effects of wildfires on stream water quality has focused on suspended sediment and nutrients in streams and water bodies, and relatively little research has examined the effects of wildfires on trace elements. The purpose of this study was two-fold: 1) to determine the effect of the 2009 Station Fire in the Angeles National Forest northeast of Los Angeles, CA on trace element concentrations in streams, and 2) compare trace elements in post-fire stormflow water quality to criteria for aquatic life to determine if trace elements reached concentrations that can harm aquatic life. Pre-storm and stormflow water-quality samples were collected in streams located inside and outside of the burn area of the Station Fire. Ash and burned soil samples were collected from several locations within the perimeter of the Station Fire. Filtered concentrations of Fe, Mn, and Hg and total concentrations of most trace elements in storm samples were elevated as a result of the Station Fire. In contrast, filtered concentrations of Cu, Pb, Ni, and Se and total concentrations of Cu were elevated primarily due to storms and not the Station Fire. Total concentrations of Se and Zn were elevated as a result of both storms and the Station Fire. Suspended sediment in stormflows following the Station Fire was an important transport mechanism for trace elements. Cu, Pb, and Zn primarily originate from ash in the suspended sediment. Fe primarily originates from burned soil in the suspended sediment. As, Mn, and Ni originate from both ash and burned soil. Filtered concentrations of trace elements in stormwater samples affected by the Station Fire did not reach levels that were greater than criteria established for aquatic life. Total concentrations for Fe, Pb, Ni, and Zn were detected at concentrations above criteria established for aquatic life.


Marine Pollution Bulletin | 2016

Environmental implications of the use of sulfidic back-bay sediments for dune reconstruction - Lessons learned post Hurricane Sandy.

Geoffrey S. Plumlee; William M. Benzel; Todd M. Hoefen; Philip L. Hageman; Suzette A. Morman; Timothy J. Reilly; Monique Adams; Cyrus J. Berry; Jeffrey M. Fischer; Irene J. Fisher

Some barrier-island dunes damaged or destroyed by Hurricane Sandys storm surges in October 2012 have been reconstructed using sediments dredged from back bays. These sand-, clay-, and iron sulfide-rich sediments were used to make berm-like cores for the reconstructed dunes, which were then covered by beach sand. In November 2013, we sampled and analyzed partially weathered materials collected from the cores of reconstructed dunes. There are generally low levels of metal toxicants in the reconstructed dune materials. However oxidation of reactive iron sulfides by percolating rainwater produces acid-sulfate pore waters, which evaporate during dry periods to produce efflorescent gypsum and sodium jarosite salts. The results suggest use of sulfidic sediments in dune reconstruction has both drawbacks (e.g., potential to generate acid runoff from dune cores following rainfall, enhanced corrosion of steel bulwarks) and possible benefits (e.g., efflorescent salts may enhance structural integrity).


Eos, Transactions American Geophysical Union | 2012

Hyperspectral remote sensing data maps minerals in Afghanistan

Trude V.V. King; Raymond F. Kokaly; Todd M. Hoefen; Michaela R. Johnson

Although Afghanistan has abundant mineral resources, including gold, silver, copper, rare earth elements, uranium, tin, iron ore, mercury, lead-zinc, bauxite, and industrial minerals, most have not been successfully developed or explored using modern methods. The U.S. Geological Survey (USGS) with cooperation from the Afghan Geological Survey (AGS) and support from the Department of Defenses Task Force for Business and Stability Operations (TFBSO) has used new imaging spectroscopy surface material maps to help refine the geologic signatures of known but poorly understood mineral deposits and identify previously unrecognized mineral occurrences. To help assess the potential mineral deposit types, the high-resolution hyperspectral data were analyzed to detect the presence of selected minerals that may be indicative of past mineralization processes. This legacy data set is providing tangible support for economic decisions by both the government of Afghanistan and other public and private sector parties interested in the development of the nations natural resources.


international geoscience and remote sensing symposium | 2006

Evaluating Minerals of Environmental Concern Using Spectroscopy

Gregg A. Swayze; Roger N. Clark; Chris T. Higgins; Raymond F. Kokaly; Keith E. Livo; Todd M. Hoefen; Cindy Ong; Fred A. Kruse

Imaging spectroscopy has been successfully used to aid researchers in characterizing potential environmental impacts posed by acid-rock drainage, ore-processing dust on mangroves, and asbestos in serpentine mineral deposits and urban dust. Many of these applications synergistically combine field spectroscopy with remote sensing data, thus allowing more-precise data calibration, spectral analysis of the data, and verification of mapping. The increased accuracy makes these environmental evaluation tools efficient because they can be used to focus field work on those areas most critical to the research effort. The use of spectroscopy to evaluate minerals of environmental concern pushes current imaging spectrometer technology to its limits; we present laboratory results that indicate the direction for future designs of imaging spectrometers.


American Mineralogist | 2018

Characterizing the source of potentially asbestos-bearing commercial vermiculite insulation using in situ IR spectroscopy

Gregg A. Swayze; Heather A. Lowers; William M. Benzel; Roger Nelson Clark; Rhonda L. Driscoll; Zac S. Perlman; Todd M. Hoefen; M. Darby Dyar

Abstract Commercially produced vermiculite insulation from Libby, Montana, contains trace levels of asbestiform amphibole, which is known to cause asbestos-related diseases. When vermiculite insulation is found in a building, evaluation for its potential asbestos content traditionally involves collecting a sample from an attic or wall and submitting it for time-consuming analyses at an off-site laboratory. The goal of this study was to determine if in situ near-infrared reflectance measurements could be used to reliably identify the source of vermiculite ore and therefore its potential to contain asbestos. Spectra of 52 expanded ore samples, including attic insulation, commercial packing materials, and horticultural products from Libby, Montana; Louisa, Virginia; Enoree, South Carolina; Palabora, South Africa; and Jiangsu, China, were measured with a portable spectrometer. The mine sources for these vermiculite ores were identified based on collection location, when known, and on differences in elemental composition as measured by electron probe microanalysis. Reflectance spectra of the insulation samples show vibrational overtone and combination absorptions that vary in wavelength position and relative intensity depending on elemental composition and proportions of their constituent micas (i.e., vermiculite ore usually consists of a mixture of hydrobiotite and vermiculite mineral flakes). Band depth ratios of the 1.38/2.32, 1.40/1.42, and 2.24/2.38 μm absorptions allow determination of a vermiculite insulation’s source and detection of its potential to contain amphibole, talc, and/or serpentine impurities. Spectroscopy cannot distinguish asbestiform vs. non-asbestiform amphiboles. However, if the spectrally determined mica composition and mineralogy of an insulation sample is consistent with ore from Libby, then it is likely that some portion of the sodic-calcic amphibole it contains is asbestiform, given that all of the nearly two dozen Libby vermiculite insulation samples examined with scanning electron microscopy in this study contain amphiboles. One sample of expanded vermiculite ore from multiple sources was recognized as a limitation of the spectral method, therefore an additional test (i.e., 2.24 μm absorption position vs. 2.24/2.38 μm band depth ratio) was incorporated into the spectral method to eliminate misclassification caused by such mixtures. With portable field spectrometers, the methodology developed can be used to determine vermiculite insulation’s source and estimate its potential amphibole content, thereby providing low-cost analysis with onsite reporting to property owners.


international geoscience and remote sensing symposium | 2016

Mineral information at micron to kilometer scales: Laboratory, field, and remote sensing imaging spectrometer data from the orange hill porphyry copper deposit, Alaska, USA

Raymond F. Kokaly; Todd M. Hoefen; Garth E. Graham; Karen D. Kelley; Michaela R. Johnson; Bernard E. Hubbard; Richard J. Goldfarb; Marcel Buchhorn; Anupma Prakash

Using imaging spectrometers at multiple scales, the USGS, in collaboration with the University of Alaska, is examining the application of hyperspectral data for identifying large-tonnage, base metal-rich deposits in Alaska. Recent studies have shown this technology can be applied to regional mineral mapping [1] and can be valuable for more local mineral exploration [2]. Passive optical remote sensing of high latitude regions faces many challenges, which include a short acquisition season and poor illumination due to low solar elevation [3]. Additional complications are encountered in the identification of surface minerals useful for mineral resource characterization because minerals of interest commonly are exposed on steep terrain, further challenging reflectance retrieval and detection of mineral signatures. Laboratory-based imaging spectrometer measurements of hand samples and field-based imaging spectrometer scans of outcrop are being analyzed to support and improve interpretations of remote sensing data collected by airborne imaging spectrometers and satellite multispectral sensors.


international geoscience and remote sensing symposium | 2015

Ultraviolet to near-infrared spectroscopy of REE-bearing materials

Todd M. Hoefen; Keith E. Livo; Stuart A. Giles; Gregg A. Swayze

Increasing worldwide demand for many of our natural resources requires that we reassess our geologic models and expand our search for rare earth element (REE) resources in the United States. Currently, there is a lack of sufficient spectroscopic investigations characterizing surface materials associated with many of the potential REE-bearing deposit types. Understanding the spectral properties of these deposits using ultraviolet (UV) to near-infrared (NIR) spectroscopic methods will add significant information about how we assess such deposits in the future using laboratory spectrometers, core scanning systems, and imaging spectrometers. Spectra of lanthanide-bearing materials show fine structure in the UV to NIR wavelengths of the electromagnetic spectrum that are caused by 4/-4/ intraconfigurational electron transitions of lanthanide ions present in the material [1]. Lanthanide-bearing minerals produce sharp spectral absorptions that allow for accurate identification of these minerals when found in significant concentrations and can also be used to identify the type of lanthanides based on the position of their absorptions.

Collaboration


Dive into the Todd M. Hoefen's collaboration.

Researchain Logo
Decentralizing Knowledge