Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Todd P. Knutson is active.

Publication


Featured researches published by Todd P. Knutson.


Cancer Research | 2009

Identification of PDE4D as a proliferation promoting factor in prostate cancer using a Sleeping Beauty transposon based somatic mutagenesis screen

Eric P. Rahrmann; Lara S. Collier; Todd P. Knutson; Meghan E. Doyal; Sheri L. Kuslak; Laura E. Green; Rita L. Malinowski; Laura Roethe; Keiko Akagi; Michelle A. Waknitz; Wei Huang; David A. Largaespada; Paul C. Marker

Retroviral and transposon-based mutagenesis screens in mice have been useful for identifying candidate cancer genes for some tumor types. However, many of the organs that exhibit the highest cancer rates in humans, including the prostate, have not previously been amenable to these approaches. This study shows for the first time that the Sleeping Beauty transposon system can be used to identify candidate prostate cancer genes in mice. Somatic mobilization of a mutagenic transposon resulted in focal epithelial proliferation and hyperplasia in the prostate. Efficient methods were established to identify transposon insertion sites in these lesions, and analysis of transposon insertions identified candidate prostate cancer genes at common insertion sites, including Pde4d. PDE4D was also overexpressed in human prostate cancer patient samples and cell lines, and changes in PDE4D mRNA isoform expression were observed in human prostate cancers. Furthermore, knockdown of PDE4D reduced the growth and migration of prostate cancer cells in vitro, and knockdown of PDE4D reduced the growth and proliferation rate of prostate cancer xenografts in vivo. These data indicate that PDE4D functions as a proliferation promoting factor in prostate cancer, and the Sleeping Beauty transposon system is a useful tool for identifying candidate prostate cancer genes.


Journal of Molecular Endocrinology | 2015

Progesterone action in breast, uterine, and ovarian cancers.

Caroline H. Diep; Andrea R. Daniel; Laura J. Mauro; Todd P. Knutson; Carol A. Lange

Progesterone and progesterone receptors (PRs) are essential for the development and cyclical regulation of hormone-responsive tissues including the breast and reproductive tract. Altered functions of PR isoforms contribute to the pathogenesis of tumors that arise in these tissues. In the breast, progesterone acts in concert with estrogen to promote proliferative and pro-survival gene programs. In sharp contrast, progesterone inhibits estrogen-driven growth in the uterus and protects the ovary from neoplastic transformation. Progesterone-dependent actions and associated biology in diverse tissues and tumors are mediated by two PR isoforms, PR-A and PR-B. These isoforms are subject to altered transcriptional activity or expression levels, differential crosstalk with growth factor signaling pathways, and distinct post-translational modifications and cofactor-binding partners. Herein, we summarize and discuss the recent literature focused on progesterone and PR isoform-specific actions in breast, uterine, and ovarian cancers. Understanding the complexity of context-dependent PR actions in these tissues is critical to developing new models that will allow us to advance our knowledge base with the goal of revealing novel and efficacious therapeutic regimens for these hormone-responsive diseases.


Oncogene | 2015

Progesterone receptor-B enhances estrogen responsiveness of breast cancer cells via scaffolding PELP1- and estrogen receptor-containing transcription complexes

Andrea R. Daniel; A. L. Gaviglio; Todd P. Knutson; Julie H. Ostrander; Antonino B. D'Assoro; Preethi Ravindranathan; Yan Peng; Ganesh V. Raj; Douglas Yee; Carol A. Lange

Progesterone and estrogen are important drivers of breast cancer proliferation. Herein, we probed estrogen receptor-α (ER) and progesterone receptor (PR) cross-talk in breast cancer models. Stable expression of PR-B in PR-low/ER+ MCF7 cells increased cellular sensitivity to estradiol and insulin-like growth factor 1 (IGF1), as measured in growth assays performed in the absence of exogenous progestin; similar results were obtained in PR-null/ER+ T47D cells stably expressing PR-B. Genome-wide microarray analyses revealed that unliganded PR-B induced robust expression of a subset of estradiol-responsive ER target genes, including cathepsin-D (CTSD). Estradiol-treated MCF7 cells stably expressing PR-B exhibited enhanced ER Ser167 phosphorylation and recruitment of ER, PR and the proline-, glutamate- and leucine-rich protein 1 (PELP1) to an estrogen response element in the CTSD distal promoter; this complex co-immunoprecipitated with IGF1 receptor (IGFR1) in whole-cell lysates. Importantly, ER/PR/PELP1 complexes were also detected in human breast cancer samples. Inhibition of IGF1R or phosphoinositide 3-kinase blocked PR-B-dependent CTSD mRNA upregulation in response to estradiol. Similarly, inhibition of IGF1R or PR significantly reduced ER recruitment to the CTSD promoter. Stable knockdown of endogenous PR or onapristone treatment of multiple unmodified breast cancer cell lines blocked estradiol-mediated CTSD induction, inhibited growth in soft agar and partially restored tamoxifen sensitivity of resistant cells. Further, combination treatment of breast cancer cells with both onapristone and IGF1R tyrosine kinase inhibitor AEW541 was more effective than either agent alone. In summary, unliganded PR-B enhanced proliferative responses to estradiol and IGF1 via scaffolding of ER-α/PELP1/IGF1R-containing complexes. Our data provide a strong rationale for targeting PR in combination with ER and IGF1R in patients with luminal breast cancer.


Cytogenetic and Genome Research | 2005

A comparative genetic map of the turkey genome

K. M. Reed; L. D. Chaves; Majken K. Hall; Todd P. Knutson; D.E. Harry

Genetic markers (microsatellites and SNPs) were used to create and compare maps of the turkey and chicken genomes. A physical map of the chicken genome was built by comparing sequences of turkey markers with the chicken whole-genome sequence by BLAST analysis. A genetic linkage map of the turkey genome (Meleagris gallopavo) was developed by segregation analysis of genetic markers within the University of Minnesota/Nicholas Turkey Breeding Farms (UMN/NTBF) resource population. This linkage map of the turkey genome includes 314 loci arranged into 29 linkage groups. An additional 40 markers are tentatively placed within linkage groups based on two-point LOD scores and 16 markers remain unlinked. Total map distance contained within linkage groups is 2,011 cM with the longest linkage group (47 loci) measuring 413.3 cM. Average marker interval over the 29 linkage groups was 6.4 cM. All but one turkey linkage group could be aligned with the physical map of the chicken genome. The present genetic map of the turkey provides a comparative framework for future genomic studies.


Endocrine-related Cancer | 2009

Progesterone receptors act as sensors for mitogenic protein kinases in breast cancer models

Gwen E. Dressing; Christy R. Hagan; Todd P. Knutson; Andrea R. Daniel; Carol A. Lange

Progesterone receptors (PR), members of the nuclear receptor superfamily, function as ligand-activated transcription factors and initiators of c-Src kinase and mitogen-activated protein kinase signaling. Bidirectional cross-talk between PR and mitogenic protein kinases results in changes in PR post-translational modification, leading to alterations in PR transcriptional activity and promoter selectivity. PR-induced rapid activation of cytoplasmic protein kinases insures precise regulatory input to downstream cellular processes that are dependent upon nuclear PR, such as cell-cycle progression, and pro-survival signaling. Here, we review interactions between PR and mitogenic protein kinases and discuss the consequences of specific post-translational modifications on PR action in breast cancer cell-line models.


Pharmacology & Therapeutics | 2014

Tracking progesterone receptor-mediated actions in breast cancer

Todd P. Knutson; Carol A. Lange

Ovarian steroid hormones contribute to breast cancer initiation and progression primarily through the actions of their nuclear transcription factors, the estrogen receptor alpha (ERα) and progesterone receptors (PRs). These receptors are important drivers of the luminal A and B subtypes of breast cancer, where estrogen-blocking drugs have been effective endocrine therapies for patients with these tumors. However, many patients do not respond, or become resistant to treatment. When endocrine therapies fail, the luminal subtypes of breast cancer are more difficult to treat because these subtypes are among the most heterogeneous in terms of mutation diversity and gene expression profiles. Recent evidence suggests that progestin and PR actions may be important drivers of luminal breast cancers. Clinical trial data has demonstrated that hormone replacement therapy with progestins drives invasive breast cancer and results in greater mortality. PR transcriptional activity is dependent upon cross-talk with growth factor signaling pathways that alter PR phosphorylation, acetylation, or SUMOylation as mechanisms for regulating PR target gene selection required for increased cell proliferation and survival. Site-specific PR phosphorylation is the primary driver of gene-selective PR transcriptional activity. However, PR phosphorylation and heightened transcriptional activity is coupled to rapid PR protein degradation; the range of active PR detected in tumors is likely to be dynamic. Thus, PR target gene signatures may provide a more accurate means of tracking PRs contribution to tumor progression rather than standard clinical protein-based (IHC) assays. Further development of antiprogestin therapies should be considered alongside antiestrogens and aromatase inhibitors.


Nucleic Acids Research | 2013

A Common Docking Domain in Progesterone Receptor-B links DUSP6 and CK2 signaling to proliferative transcriptional programs in breast cancer cells

Christy R. Hagan; Todd P. Knutson; Carol A. Lange

Progesterone receptors (PR) are transcription factors relevant to breast cancer biology. Herein, we describe an N-terminal common docking (CD) domain in PR-B, a motif first described in mitogen-activated protein kinases. Binding studies revealed PR-B interacts with dual-specificity phosphatase 6 (DUSP6) via the CD domain. Mutation of the PR-B CD domain (mCD) attenuated cell cycle progression and expression of PR-B target genes (including STAT5A and Wnt1); mCD PR-B failed to undergo phosphorylation on Ser81, a ck2-dependent site required for expression of these genes. PR-B Ser81 phosphorylation was dependent on binding with DUSP6 and required for recruitment of a transcriptional complex consisting of PR-B, DUSP6 and ck2 to an enhancer region upstream of the Wnt1 promoter. STAT5 was present at this site in the absence or presence of progestin. Furthermore, phospho-Ser81 PR-B was recruited to the STAT5A gene upon progestin treatment, suggestive of a feed-forward mechanism. Inhibition of JAK/STAT-signaling blocked progestin-induced STAT5A and Wnt1 expression. Our studies show that DUSP6 serves as a scaffold for ck2-dependent PR-B Ser81 phosphorylation and subsequent PR-B-specific gene selection in coordination with STAT5. Coregulation of select target genes by PR-B and STAT5 is likely a global mechanism required for growth promoting programs relevant to mammary stem cell biology and cancer.


Molecular Endocrinology | 2014

Progesterone Receptor–Cyclin D1 Complexes Induce Cell Cycle–Dependent Transcriptional Programs in Breast Cancer Cells

Gwen E. Dressing; Todd P. Knutson; Matthew J. Schiewer; Andrea R. Daniel; Christy R. Hagan; Caroline H. Diep; Karen E. Knudsen; Carol A. Lange

The progesterone receptor (PR) and its coactivators are direct targets of activated cyclin-dependent kinases (CDKs) in response to peptide growth factors, progesterone, and deregulation of cell cycle inhibitors. Herein, using the T47D breast cancer model, we probed mechanisms of cell cycle-dependent PR action. In the absence of exogenous progestin, the PR is specifically phosphorylated during the G2/M phase. Accordingly, numerous PR target genes are cell cycle regulated, including HSPB8, a heat-shock protein whose high expression is associated with tamoxifen resistance. Progestin-induced HSPB8 expression required cyclin D1 and was insensitive to antiestrogens but blocked by antiprogestins or inhibition of specificity factor 1 (SP1). HSPB8 expression increased with or without ligand when cells were G2/M synchronized or contained high levels of cyclin D1. Knockdown of PRs abrogated ligand-independent HSPB8 expression in synchronized cells. Notably, PRs and cyclin D1 copurified in whole-cell lysates of transiently transfected COS-1 cells and in PR-positive T47D breast cancer cells expressing endogenous cyclin D1. PRs, cyclin D1, and SP1 were recruited to the HSPB8 promoter in progestin-treated T47D breast cancer cells. Mutation of PR Ser345 to Ala (S345A) or inhibition of CDK2 activity using roscovitine disrupted PR/cyclin D1 interactions with DNA and blocked HSPB8 mRNA expression. Interaction of phosphorylated PRs with SP1 and cyclin D1 provides a mechanism for targeting transcriptionally active PRs to selected gene promoters relevant to breast cancer progression. Understanding the functional linkage between PRs and cell cycle regulatory proteins will provide keys to targeting novel PR/cyclin D1 cross talk in both hormone-responsive disease and HSPB8-high refractory disease with high HSPB8 expression.


Animal Biotechnology | 2003

Microsatellite Loci for Genetic Mapping in the Turkey (Meleagris gallopavo)

Kent M. Reed; L. D. Chaves; Majken K. Hall; Todd P. Knutson; J. A. Rowe; A. J. Torgerson

Abstract New microsatellite loci for the turkey (Meleagris gallopavo) were developed from two small insert DNA libraries. Polymorphism at these new loci was examined in domestic birds and two resource populations designed for genetic linkage mapping. The majority of loci (152 of 168) was polymorphic in domestic turkeys and informative in two mapping resource populations and thus will be useful for genetic linkage mapping.


Journal of Endocrinology | 2012

Progesterone promotes focal adhesion formation and migration in breast cancer cells through induction of protease-activated receptor-1

Jorge Díaz; Evelyn Aranda; Soledad Henriquez; Marisol Quezada; Estefanía Espinoza; Maria Loreto Bravo; Barbara Oliva; Soledad Lange; Manuel Villalón; Marius C. Jones; Jan J. Brosens; Sumie Kato; Mauricio Cuello; Todd P. Knutson; Carol A. Lange; Lisette Leyton; Gareth I. Owen

Progesterone and progestins have been demonstrated to enhance breast cancer cell migration, although the mechanisms are still not fully understood. The protease-activated receptors (PARs) are a family of membrane receptors that are activated by serine proteases in the blood coagulation cascade. PAR1 (F2R) has been reported to be involved in cancer cell migration and overexpressed in breast cancer. We herein demonstrate that PAR1 mRNA and protein are upregulated by progesterone treatment of the breast cancer cell lines ZR-75 and T47D. This regulation is dependent on the progesterone receptor (PR) but does not require PR phosphorylation at serine 294 or the PR proline-rich region mPRO. The increase in PAR1 mRNA was transient, being present at 3  h and returning to basal levels at 18  h. The addition of a PAR1-activating peptide (aPAR1) to cells treated with progesterone resulted in an increase in focal adhesion (FA) formation as measured by the cellular levels of phosphorylated FA kinase. The combined but not individual treatment of progesterone and aPAR1 also markedly increased stress fiber formation and the migratory capacity of breast cancer cells. In agreement with in vitro findings, data mining from the Oncomine platform revealed that PAR1 expression was significantly upregulated in PR-positive breast tumors. Our observation that PAR1 expression and signal transduction are modulated by progesterone provides new insight into how the progestin component in hormone therapies increases the risk of breast cancer in postmenopausal women.

Collaboration


Dive into the Todd P. Knutson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. D. Chaves

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. M. Reed

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge