Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Todd Small is active.

Publication


Featured researches published by Todd Small.


The Astrophysical Journal | 2005

The Galaxy Evolution Explorer: A Space ultraviolet survey mission

D. Christopher Martin; James L. Fanson; David Schiminovich; Patrick Morrissey; Peter G. Friedman; Tom A. Barlow; Tim Conrow; Robert Grange; Patrick Jelinsky; Bruno Milliard; Oswald H. W. Siegmund; Luciana Bianchi; Yong Ik Byun; Jose Donas; Karl Forster; Timothy M. Heckman; Young-Wook Lee; Barry F. Madore; Roger F. Malina; Susan G. Neff; R. Michael Rich; Todd Small; Frank Surber; Alexander S. Szalay; Barry Y. Welsh; Ted K. Wyder

We give an overview of the Galaxy Evolution Explorer (GALEX), a NASA Explorer Mission launched on 2003 April 28. GALEX is performing the first space UV sky survey, including imaging and grism surveys in two bands (1350-1750 and 1750-2750 ?). The surveys include an all-sky imaging survey (mAB 20.5), a medium imaging survey of 1000 deg2 (mAB 23), a deep imaging survey of 100 deg2 (mAB 25), and a nearby galaxy survey. Spectroscopic (slitless) grism surveys (R = 100-200) are underway with various depths and sky coverage. Many targets overlap existing or planned surveys in other bands. We will use the measured UV properties of local galaxies, along with corollary observations, to calibrate the relationship of the UV and global star formation rate in local galaxies. We will apply this calibration to distant galaxies discovered in the deep imaging and spectroscopic surveys to map the history of star formation in the universe over the redshift range 0 < z < 2 and probe the physical drivers of star formation in galaxies. The GALEX mission includes a guest investigator program, supporting the wide variety of programs made possible by the first UV sky survey.


The Astrophysical Journal | 2007

Star Formation in AEGIS Field Galaxies since z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies

Kai G. Noeske; Benjamin J. Weiner; S. M. Faber; Casey Papovich; David C. Koo; Rachel S. Somerville; Kevin Bundy; Christopher J. Conselice; J. A. Newman; David Schiminovich; E. Le Floc'h; Alison L. Coil; G. H. Rieke; Jennifer M. Lotz; Joel R. Primack; P. Barmby; Michael C. Cooper; M. Davis; Richard S. Ellis; Giovanni G. Fazio; Puragra Guhathakurta; Jing Huang; Susan A. Kassin; D. C. Martin; Andrew C. Phillips; Robert Michael Rich; Todd Small; C. A. N. Willmer; Graham Wallace Wilson

We analyze star formation (SF) as a function of stellar mass (M☉) and redshift z in the All-Wavelength Extended Groth Strip International Survey. For 2905 field galaxies, complete to 10^10(10^10.8 )M at z < 0.7(1), with Keck spectroscopic redshifts out to z = 1.1, we compile SF rates (SFRs) from emission lines, GALEX, and Spitzer MIPS 24 µm photometry, optical-NIR M* measurements, and HST morphologies. Galaxies with reliable signs of SF form a distinct “main sequence” (MS), with a limited range of SFRs at a given M* and z (1 σ ≾ ±0.3 dex), and log (SFR) approximately proportional to log M*. The range of log (SFR) remains constant to z > 1, while the MS as a whole moves to higher SFR as z increases. The range of the SFR along the MS constrains the amplitude of episodic variations of SF and the effect of mergers on the SFR. Typical galaxies spend ∼67%(95%) of their lifetime since z = 1 within a factor of ≾2(4) of their average SFR at a given M* and z. The dominant mode of the evolution of SF since z ∼ 1 is apparently a gradual decline of the average SFR in most individual galaxies, not a decreasing frequency of starburst episodes, or a decreasing factor by which SFRs are enhanced in starbursts. LIRGs at z ∼ 1 seem to mostly reflect the high SFR typical for massive galaxies at that epoch. The smooth MS may reflect that the same set of few physical processes governs SF prior to additional quenching processes. A gradual process like gas exhaustion may play a dominant role.


Astrophysical Journal Supplement Series | 2007

UV STAR FORMATION RATES IN THE LOCAL UNIVERSE

Samir Salim; R. Michael Rich; S. Charlot; Jarle Brinchmann; Benjamin D. Johnson; David Schiminovich; Mark Seibert; Ryan P. Mallery; Timothy M. Heckman; Karl Forster; Peter G. Friedman; D. Christopher Martin; Patrick Morrissey; Susan G. Neff; Todd Small; Ted K. Wyder; Luciana Bianchi; Jose Donas; Young-Wook Lee; Barry F. Madore; Bruno Milliard; Alexander S. Szalay; Barry Y. Welsh; Sukyoung K. Yi

We measure star formation rates (SFRs) of ≈50,000 optically selected galaxies in the local universe (z ≈ 0.1)—from gas-rich dwarfs to massive ellipticals. We obtain dust-corrected SFRs by fitting the GALEX (ultraviolet) and SDSS photometry to a library of dust-attenuated population synthesis models. For star-forming galaxies, our UV-based SFRs compare remarkably well with those from SDSS-measured emission lines (Hα). Deviations from perfect agreement are shown to be due to differences in the dust attenuation estimates. In contrast to Hα measurements, UV provides reliable SFRs for galaxies with weak Hα, and where Hα is contaminated with AGN emission (1/2 of the sample). Using full-SED SFRs, we calibrate a simple prescription that uses GALEX far- and near-UV magnitudes to produce dust-corrected SFRs for normal star-forming galaxies. The specific SFR is considered as a function of stellar mass for (1) star-forming galaxies with no AGNs, (2) those hosting an AGN, and (3) galaxies without Hα emission. We find that the three have distinct star formation histories, with AGNs lying intermediate between the star-forming and the quiescent galaxies. Star-forming galaxies without an AGN lie on a relatively narrow linear sequence. Remarkably, galaxies hosting a strong AGN appear to represent the massive continuation of this sequence. On the other hand, weak AGNs, while also massive, have lower SFRs, sometimes extending to the realm of quiescent galaxies. We propose an evolutionary sequence for massive galaxies that smoothly connects normal star-forming galaxies to quiescent galaxies via strong and weak AGNs. We confirm that some galaxies with no Hα show signs of star formation in the UV. We derive a cosmic star formation density at z = 0.1 with significantly smaller total error than previous measurements.


The Astrophysical Journal | 2007

The All-wavelength Extended Groth Strip International Survey (AEGIS) Data Sets

M. Davis; Puragra Guhathakurta; Nicholas P. Konidaris; Jeffrey A. Newman; M. L. N. Ashby; A. D. Biggs; Pauline Barmby; Kevin Bundy; S. C. Chapman; Alison L. Coil; Christopher J. Conselice; Michael C. Cooper; Darren J. Croton; Peter R. M. Eisenhardt; Richard S. Ellis; S. M. Faber; Taotao Fang; Giovanni G. Fazio; A. Georgakakis; Brian F. Gerke; W. M. Goss; Stephen D. J. Gwyn; Justin Harker; Andrew M. Hopkins; Jia-Sheng Huang; R. J. Ivison; Susan A. Kassin; Evan N. Kirby; Anton M. Koekemoer; David C. Koo

In this the first of a series of Letters, we present a panchromatic data set in the Extended Groth Strip region of the sky. Our survey, the All-Wavelength Extended Groth Strip International Survey (AEGIS), aims to study the physical properties and evolutionary processes of galaxies at z ~ 1. It includes the following deep, wide-field imaging data sets: Chandra/ACIS X-ray, GALEX ultraviolet, CFHT/MegaCam Legacy Survey optical, CFHT/CFH12K optical, Hubble Space Telescope/ACS optical and NICMOS near-infrared, Palomar/WIRC near-infrared, Spitzer/IRAC mid-infrared, Spitzer/MIPS far-infrared, and VLA radio continuum. In addition, this region of the sky has been targeted for extensive spectroscopy using the Deep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck II 10 m telescope. Our survey is compared to other large multiwavelength surveys in terms of depth and sky coverage.


Monthly Notices of the Royal Astronomical Society | 2010

The WiggleZ Dark Energy Survey: survey design and first data release

Michael J. Drinkwater; Russell J. Jurek; Chris Blake; David Woods; Kevin A. Pimbblet; Karl Glazebrook; Rob Sharp; Michael Pracy; Sarah Brough; Matthew Colless; Warrick J. Couch; Scott M. Croom; Tamara M. Davis; Duncan A. Forbes; Karl Forster; David G. Gilbank; Michael D. Gladders; Ben Jelliffe; N. T. Jones; I-hui Li; Barry F. Madore; D. Christopher Martin; Gregory B. Poole; Todd Small; Emily Wisnioski; Ted K. Wyder; H. K. C. Yee

The WiggleZ Dark Energy Survey is a survey of 240 000 emission-line galaxies in the distant Universe, measured with the AAOmega spectrograph on the 3.9-m Anglo-Australian Telescope (AAT). The primary aim of the survey is to precisely measure the scale of baryon acoustic oscillations (BAO) imprinted on the spatial distribution of these galaxies at look-back times of 4–8 Gyr. The target galaxies are selected using ultraviolet (UV) photometry from the Galaxy Evolution Explorer satellite, with a flux limit of NUV < 22.8 mag . We also require that the targets are detected at optical wavelengths, specifically in the range 20.0 < r < 22.5 mag . We use the Lyman break method applied to the UV colours, with additional optical colour limits, to select high-redshift galaxies. The galaxies generally have strong emission lines, permitting reliable redshift measurements in relatively short exposure times on the AAT. The median redshift of the galaxies is z_(med)= 0.6 . The redshift range containing 90 per cent of the galaxies is 0.2 < z < 1.0 . The survey will sample a volume of ~1 Gpc^3 over a projected area on the sky of 1000 deg^2, with an average target density of 350 deg^(−2). Detailed forecasts indicate that the survey will measure the BAO scale to better than 2 per cent and the tangential and radial acoustic wave scales to approximately 3 and 5 per cent, respectively. Combining the WiggleZ constraints with existing cosmic microwave background measurements and the latest supernova data, the marginalized uncertainties in the cosmological model are expected to be σ(Ω_m) = 0.02 and σ(w) = 0.07 (for a constant w model). The WiggleZ measurement of w will constitute a robust, precise and independent test of dark energy models. This paper provides a detailed description of the survey and its design, as well as the spectroscopic observations, data reduction and redshift measurement techniques employed. It also presents an analysis of the properties of the target galaxies, including emission-line diagnostics which show that they are mostly extreme starburst galaxies, and Hubble Space Telescope images, which show that they contain a high fraction of interacting or distorted systems. In conjunction with this paper, we make a public data release of data for the first 100 000 galaxies measured for the project.


Astrophysical Journal Supplement Series | 2007

The UV-Optical Galaxy Color-Magnitude Diagram. I. Basic Properties

Ted K. Wyder; D. Christopher Martin; David Schiminovich; Mark Seibert; Tamas Budavari; Marie Treyer; Tom A. Barlow; Karl Forster; Peter G. Friedman; Patrick Morrissey; Susan G. Neff; Todd Small; Luciana Bianchi; Jose Donas; Timothy M. Heckman; Young-Wook Lee; Barry F. Madore; Bruno Milliard; R. Michael Rich; Alexander S. Szalay; Barry Y. Welsh; Sukyoung K. Yi

We have analyzed the bivariate distribution of galaxies as a function of ultraviolet-optical colors and absolute magnitudes in the local universe. The sample consists of galaxies with redshifts and optical photometry from the Sloan Digital Sky Survey (SDSS) main galaxy sample matched with detections in the near-ultraviolet (NUV) and far-ultraviolet (FUV) bands in the Medium Imaging Survey being carried out by the Galaxy Evolution Explorer (GALEX) satellite. In the (NUV − r)_(0.1) versus M_(r,0.1) galaxy color-magnitude diagram, the galaxies separate into two well-defined blue and red sequences. The (NUV − r)_(0.1) color distribution at each M_(r,0.1) is not well fit by the sum of two Gaussians due to an excess of galaxies in between the two sequences. The peaks of both sequences become redder with increasing luminosity, with a distinct blue peak visible up to M_(r,0.1) ~ − 23. The r_(0.1)-band luminosity functions vary systematically with color, with the faint-end slope and characteristic luminosity gradually increasing with color. After correcting for attenuation due to dust, we find that approximately one-quarter of the color variation along the blue sequence is due to dust, with the remainder due to star formation history and metallicity. Finally, we present the distribution of galaxies as a function of specific star formation rate and stellar mass. The specific star formation rates imply that galaxies along the blue sequence progress from low-mass galaxies with star formation rates that increase somewhat with time to more massive galaxies with a more or less constant star formation rate. Above a stellar mass of ~10^(10.5) M_☉, galaxies with low ratios of current to past averaged star formation rate begin to dominate.


The Astrophysical Journal | 2005

Galaxy evolution explorer ultraviolet color-magnitude relations and evidence of recent star formation in early-type galaxies

Sukyoung K. Yi; Suk-Jin Yoon; Sugata Kaviraj; J.-M. Deharveng; Robert Michael Rich; Samir Salim; A. Boselli; Young-Wook Lee; Chang Hee Ree; Young-Jong Sohn; Soo-Chang Rey; Jake Lee; Jaehyon Rhee; Luciana Bianchi; Yong-Ik Byun; Jose Donas; Peter G. Friedman; Timothy M. Heckman; Patrick Jelinsky; Barry F. Madore; Roger F. Malina; D. C. Martin; Bruno Milliard; Patrick Morrissey; Susan G. Neff; David Schiminovich; O. H. W. Siegmund; Todd Small; Alexander S. Szalay; M. J. Jee

We have used the Galaxy Evolution Explorer UV photometric data to construct a first near-UV (NUV) color-magnitude relation (CMR) for the galaxies preclassified as early-type by Sloan Digital Sky Survey studies. The NUV CMR is a powerful tool for tracking the recent star formation history in early-type galaxies, owing to its high sensitivity to the presence of young stellar populations. Our NUV CMR for UV-weak galaxies shows a well-defined slope and thus will be useful for interpreting the rest-frame NUV data of distant galaxies and studying their star formation history. Compared to optical CMRs, the NUV CMR shows a substantially larger scatter, which we interpret as evidence of recent star formation activities. Roughly 15% of the recent epoch (z < 0.13) bright [M(r) < -22] early-type galaxies show a sign of recent (1 Gyr) star formation at the 1%-2% level (lower limit) in mass compared to the total stellar mass. This implies that low-level residual star formation was common during the last few billion years even in bright early-type galaxies.


The Astrophysical Journal | 2005

The GALEX-VVDS measurement of the evolution of the far-ultraviolet luminosity density and the cosmic star formation rate

David Schiminovich; O. Ilbert; S. Arnouts; B. Milliard; L. Tresse; O. Le Fèvre; Marie Treyer; Ted K. Wyder; Tamas Budavari; E. Zucca; G. Zamorani; D. C. Martin; C. Adami; M. Arnaboldi; S. Bardelli; Tom A. Barlow; Luciana Bianchi; M. Bolzonella; D. Bottini; Yong-Ik Byun; A. Cappi; T. Contini; S. Charlot; J. Donas; Karl Forster; S. Foucaud; P. Franzetti; Peter G. Friedman; B. Garilli; I. Gavignaud

In a companion paper (Arnouts et al. 2004) we presented new measurements of the galaxy luminosity function at 1500 Angstroms out to z~1 using GALEX-VVDS observations (1039 galaxies with NUV 0.2) and at higher z using existing data sets. In this paper we use the same sample to study evolution of the FUV luminosity density. We detect evolution consistent with a (1+z)^{2.5+/-0.7} rise to z~1 and (1+z)^{0.5+/-0.4} for z>1. The luminosity density from the most UV-luminous galaxies (UVLG) is undergoing dramatic evolution (x30) between 025%) of the total FUV luminosity density at z<1. We measure dust attenuation and star formation rates of our sample galaxies and determine the star formation rate density as a function of redshift, both uncorrected and corrected for dust. We find good agreement with other measures of the SFR density in the rest ultraviolet and Halpha given the still significant uncertainties in the attenuation correction.


The Astrophysical Journal | 2005

Dust attenuation in the nearby universe: a comparison between galaxies selected in the ultraviolet and in the far-infrared

V. Buat; J. Iglesias-Páramo; Mark Seibert; D. Burgarella; S. Charlot; D. C. Martin; C. K. Xu; Timothy M. Heckman; S. Boissier; A. Boselli; Tom A. Barlow; Luciana Bianchi; Yong-Ik Byun; Jose Donas; Karl Forster; Peter G. Friedman; P. N. Jelinski; Young-Wook Lee; Barry F. Madore; Roger F. Malina; Bruno Milliard; P. Morissey; Susan G. Neff; Michael R. Rich; D. Schiminovitch; O. H. W. Siegmund; Todd Small; Alexander S. Szalay; Barry Y. Welsh; Ted K. Wyder

We compare the dust attenuation properties of two samples of galaxies purely selected in the Galaxy Evolution Explorer (GALEX) near-ultraviolet band (NUV; 1750-2750 A, λmean = 2310 A) and in the far-infrared (FIR) at 60 μm. These samples are built using the GALEX and IRAS sky surveys over ~600 deg2. The NUV-selected sample contains 95 galaxies detected down to NUV = 16 mag (AB system). Eighty-three galaxies in this sample are spiral or irregular, and only two of them are not detected at 60 μm. The FIR-selected sample is built from the IRAS PSCz survey, which is complete down to 0.6 Jy. Among the 163 sources, we select 118 star-forming galaxies that are well measured by IRAS; all but one are detected in NUV, and 14 galaxies are not detected in the far-ultraviolet band (FUV; 1350-1750 A, λmean = 1530 A). The dust-to-ultraviolet (NUV and FUV) flux ratio is calibrated to estimate the dust attenuation at both wavelengths. The median value of the attenuation in NUV is found to be ~1 mag for the NUV-selected sample, versus ~2 mag for the FIR-selected one. Within both samples, the dust attenuation is found to correlate with the luminosity of the galaxies. Almost all the NUV-selected galaxies and two-thirds of the FIR-selected sample exhibit a lower dust attenuation than expected from the tight relation found previously for starburst galaxies between dust attenuation and the slope of the ultraviolet continuum. The situation is reversed for the remaining third of the FIR-selected galaxies: their extinction is higher than that deduced from their FUV - NUV color and the relation for starbursts.


The Astrophysical Journal | 2005

THE ON-ORBIT PERFORMANCE OF THE GALAXY EVOLUTION EXPLORER

Patrick Morrissey; David Schiminovich; Tom A. Barlow; D. Christopher Martin; Brian K. Blakkolb; Tim Conrow; Brian Cooke; Kerry Erickson; James L. Fanson; Peter G. Friedman; Robert Grange; Patrick Jelinsky; Siu-Chun Lee; Dankai Liu; Alan S. Mazer; Ryan McLean; Bruno Milliard; David Randall; Wes Schmitigal; Amit Sen; Oswald H. W. Siegmund; Frank Surber; Arthur H. Vaughan; Maurice Viton; Barry Y. Welsh; Luciana Bianchi; Yong-Ik Byun; Jose Donas; Karl Forster; Timothy M. Heckman

We report the first years on-orbit performance results for the Galaxy Evolution Explorer (GALEX), a NASA Small Explorer that is performing a survey of the sky in two ultraviolet bands. The instrument comprises a 50 cm diameter modified Ritchey-Chretien telescope with a 125 field of view, selectable imaging and objective-grism spectroscopic modes, and an innovative optical system with a thin-film multilayer dichroic beam splitter that enables simultaneous imaging by a pair of photon-counting, microchannel-plate, delay-line readout detectors. Initial measurements demonstrate that GALEX is performing well, meeting its requirements for resolution, efficiency, astrometry, bandpass definition, and survey sensitivity.

Collaboration


Dive into the Todd Small's collaboration.

Top Co-Authors

Avatar

Peter G. Friedman

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karl Forster

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Susan G. Neff

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Morrissey

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Barry F. Madore

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Tom A. Barlow

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ted K. Wyder

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge