Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Todd T. Talley is active.

Publication


Featured researches published by Todd T. Talley.


The EMBO Journal | 2005

Crystal structure of a Cbtx–AChBP complex reveals essential interactions between snake α-neurotoxins and nicotinic receptors

Yves Bourne; Todd T. Talley; Scott B. Hansen; Palmer Taylor; Pascale Marchot

The crystal structure of the snake long α‐neurotoxin, α‐cobratoxin, bound to the pentameric acetylcholine‐binding protein (AChBP) from Lymnaea stagnalis, was solved from good quality density maps despite a 4.2 Å overall resolution. The structure unambiguously reveals the positions and orientations of all five three‐fingered toxin molecules inserted at the AChBP subunit interfaces and the conformational changes associated with toxin binding. AChBP loops C and F that border the ligand‐binding pocket move markedly from their original positions to wrap around the tips of the toxin first and second fingers and part of its C‐terminus, while rearrangements also occur in the toxin fingers. At the interface of the complex, major interactions involve aromatic and aliphatic side chains within the AChBP binding pocket and, at the buried tip of the toxin second finger, conserved Phe and Arg residues that partially mimic a bound agonist molecule. Hence this structure, in revealing a distinctive and unpredicted conformation of the toxin‐bound AChBP molecule, provides a lead template resembling a resting state conformation of the nicotinic receptor and for understanding selectivity of curaremimetic α‐neurotoxins for the various receptor species.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Structural determinants in phycotoxins and AChBP conferring high affinity binding and nicotinic AChR antagonism

Yves Bourne; Zoran Radić; Rómulo Aráoz; Todd T. Talley; Evelyne Benoit; Denis Servent; Palmer Taylor; Jordi Molgó; Pascale Marchot

Spirolide and gymnodimine macrocyclic imine phycotoxins belong to an emerging class of chemical agents associated with marine algal blooms and shellfish toxicity. Analysis of 13-desmethyl spirolide C and gymnodimine A by binding and voltage-clamp recordings on muscle-type α12βγδ and neuronal α3β2 and α4β2 nicotinic acetylcholine receptors reveals subnanomolar affinities, potent antagonism, and limited subtype selectivity. Their binding to acetylcholine-binding proteins (AChBP), as soluble receptor surrogates, exhibits picomolar affinities governed by diffusion-limited association and slow dissociation, accounting for apparent irreversibility. Crystal structures of the phycotoxins bound to Aplysia-AChBP (≈2.4Å) show toxins neatly imbedded within the nest of ar-omatic side chains contributed by loops C and F on opposing faces of the subunit interface, and which in physiological conditions accommodates acetylcholine. The structures also point to three major features: (i) the sequence-conserved loop C envelops the bound toxins to maximize surface complementarity; (ii) hydrogen bonding of the protonated imine nitrogen in the toxins with the carbonyl oxygen of loop C Trp147 tethers the toxin core centered within the pocket; and (iii) the spirolide bis-spiroacetal or gymnodimine tetrahydrofuran and their common cyclohexene-butyrolactone further anchor the toxins in apical and membrane directions, along the subunit interface. In contrast, the se-quence-variable loop F only sparingly contributes contact points to preserve the broad receptor subtype recognition unique to phycotoxins compared with other nicotinic antagonists. These data offer unique means for detecting spiroimine toxins in shellfish and identify distinctive ligands, functional determinants and binding regions for the design of new drugs able to target several receptor subtypes with high affinity.


The EMBO Journal | 2009

Structural determinants for interaction of partial agonists with acetylcholine binding protein and neuronal α7 nicotinic acetylcholine receptor

Ryan E. Hibbs; Gerlind Sulzenbacher; Jianxin Shi; Todd T. Talley; Sandrine Conrod; William R. Kem; Palmer Taylor; Pascale Marchot; Yves Bourne

The pentameric acetylcholine‐binding protein (AChBP) is a soluble surrogate of the ligand binding domain of nicotinic acetylcholine receptors. Agonists bind within a nest of aromatic side chains contributed by loops C and F on opposing faces of each subunit interface. Crystal structures of Aplysia AChBP bound with the agonist anabaseine, two partial agonists selectively activating the α7 receptor, 3‐(2,4‐dimethoxybenzylidene)‐anabaseine and its 4‐hydroxy metabolite, and an indole‐containing partial agonist, tropisetron, were solved at 2.7–1.75 Å resolution. All structures identify the Trp 147 carbonyl oxygen as the hydrogen bond acceptor for the agonist‐protonated nitrogen. In the partial agonist complexes, the benzylidene and indole substituent positions, dictated by tight interactions with loop F, preclude loop C from adopting the closed conformation seen for full agonists. Fluctuation in loop C position and duality in ligand binding orientations suggest molecular bases for partial agonism at full‐length receptors. This study, while pointing to loop F as a major determinant of receptor subtype selectivity, also identifies a new template region for designing α7‐selective partial agonists to treat cognitive deficits in mental and neurodegenerative disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Atomic interactions of neonicotinoid agonists with AChBP: Molecular recognition of the distinctive electronegative pharmacophore

Todd T. Talley; Michal Harel; Ryan E. Hibbs; Zoran Radić; Motohiro Tomizawa; John E. Casida; Palmer Taylor

Acetylcholine-binding proteins (AChBPs) from mollusks are suitable structural and functional surrogates of the nicotinic acetylcholine receptors when combined with transmembrane spans of the nicotinic receptor. These proteins assemble as a pentamer with identical ACh binding sites at the subunit interfaces and show ligand specificities resembling those of the nicotinic receptor for agonists and antagonists. A subset of ligands, termed the neonicotinoids, exhibit specificity for insect nicotinic receptors and selective toxicity as insecticides. AChBPs are of neither mammalian nor insect origin and exhibit a distinctive pattern of selectivity for the neonicotinoid ligands. We define here the binding orientation and determinants of differential molecular recognition for the neonicotinoids and classical nicotinoids by estimates of kinetic and equilibrium binding parameters and crystallographic analysis. Neonicotinoid complex formation is rapid and accompanied by quenching of the AChBP tryptophan fluorescence. Comparisons of the neonicotinoids imidacloprid and thiacloprid in the binding site from Aplysia californica AChBP at 2.48 and 1.94 Å in resolution reveal a single conformation of the bound ligands with four of the five sites occupied in the pentameric crystal structure. The neonicotinoid electronegative pharmacophore is nestled in an inverted direction compared with the nicotinoid cationic functionality at the subunit interfacial binding pocket. Characteristic of several agonists, loop C largely envelops the ligand, positioning aromatic side chains to interact optimally with conjugated and hydrophobic regions of the neonicotinoid. This template defines the association of interacting amino acids and their energetic contributions to the distinctive interactions of neonicotinoids.


Journal of Biological Chemistry | 2002

Tryptophan Fluorescence Reveals Conformational Changes in the Acetylcholine Binding Protein

Scott B. Hansen; Zoran Radić; Todd T. Talley; Brian E. Molles; Tom Deerinck; Igor Tsigelny; Palmer Taylor

The recent characterization of an acetylcholine binding protein (AChBP) from the fresh water snail, Lymnaea stagnalis, shows it to be a structural homolog of the extracellular domain of the nicotinic acetylcholine receptor (nAChR). To ascertain whether the AChBP exhibits the recognition properties and functional states of the nAChR, we have expressed the protein in milligram quantities from a synthetic cDNA transfected into human embryonic kidney (HEK) cells. The protein secreted into the medium shows a pentameric rosette structure with ligand stoichiometry approximating five sites per pentamer. Surprisingly, binding of acetylcholine, selective agonists, and antagonists ranging from small alkaloids to larger peptides results in substantial quenching of the intrinsic tryptophan fluorescence. Using stopped-flow techniques, we demonstrate rapid rates of association and dissociation of agonists and slow rates for the α-neurotoxins. Since agonist binding occurs in millisecond time frames, and the α-neurotoxins may induce a distinct conformational state for the AChBP-toxin complex, the snail protein shows many of the properties expected for receptor recognition of interacting ligands. Thus, the marked tryptophan quenching not only documents the importance of aromatic residues in ligand recognition, but establishes that the AChBP will be a useful functional as well as structural surrogate of the nicotinic receptor.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Atypical nicotinic agonist bound conformations conferring subtype selectivity

Motohiro Tomizawa; David A. Maltby; Todd T. Talley; Kathleen A. Durkin; Katalin F. Medzihradszky; Alma L. Burlingame; Palmer Taylor; John E. Casida

The nicotinic acetylcholine (ACh) receptor (nAChR) plays a crucial role in excitatory neurotransmission and is an important target for drugs and insecticides. Diverse nAChR subtypes with various subunit combinations confer differential selectivity for nicotinic drugs. We investigated the subtype selectivity of nAChR agonists by comparing two ACh-binding proteins (AChBPs) as structural surrogates with distinct pharmacological profiles [i.e., Lymnaea stagnalis (Ls) AChBP of low neonicotinoid and high nicotinoid sensitivities and Aplysia californica (Ac) AChBP of high neonicotinoid sensitivity] mimicking vertebrate and insect nAChR subtypes, respectively. The structural basis of subtype selectivity was examined here by photoaffinity labeling. Two azidoneonicotinoid probes in the Ls-AChBP surprisingly modified two distinct and distant subunit interface sites: loop F Y164 of the complementary or (−)-face subunit and loop C Y192 of the principal or (+)-face subunit, whereas three azidonicotinoid probes derivatized only Y192. Both the neonicotinoid and nicotinoid probes labeled Ac-AChBP at only one position at the interface between loop C Y195 and loop E M116. These findings were used to establish structural models of the two AChBP subtypes. In the Ac-AChBP, the neonicotinoids and nicotinoids are nestled in similar bound conformations. Intriguingly, for the Ls-AChBP, the neonicotinoids have two bound conformations that are inverted relative to each other, whereas nicotinoids appear buried in only one conserved conformation as seen for the Ac-AChBP subtype. Accordingly, the subtype selectivity is based on two disparate bound conformations of nicotinic agonists, thereby establishing an atypical concept for neonicotinoid versus nicotinoid selectivity between insect and vertebrate nAChRs.


Journal of the American Chemical Society | 2012

Generation of Candidate Ligands for Nicotinic Acetylcholine Receptors via In Situ Click Chemistry with a Soluble Acetylcholine Binding Protein Template

Neil P. Grimster; Bernhard Stump; Joseph R. Fotsing; Timo Weide; Todd T. Talley; John G. Yamauchi; Akos Nemecz; Choel Kim; Kwok-Yiu Ho; K. Barry Sharpless; Palmer Taylor; Valery V. Fokin

Nicotinic acetylcholine receptors (nAChRs), which are responsible for mediating key physiological functions, are ubiquitous in the central and peripheral nervous systems. As members of the Cys loop ligand-gated ion channel family, neuronal nAChRs are pentameric, composed of various permutations of α (α2 to α10) and β (β2 to β4) subunits forming functional heteromeric or homomeric receptors. Diversity in nAChR subunit composition complicates the development of selective ligands for specific subtypes, since the five binding sites reside at the subunit interfaces. The acetylcholine binding protein (AChBP), a soluble extracellular domain homologue secreted by mollusks, serves as a general structural surrogate for the nAChRs. In this work, homomeric AChBPs from Lymnaea and Aplysia snails were used as in situ templates for the generation of novel and potent ligands that selectively bind to these proteins. The cycloaddition reaction between building-block azides and alkynes to form stable 1,2,3-triazoles was used to generate the leads. The extent of triazole formation on the AChBP template correlated with the affinity of the triazole product for the nicotinic ligand binding site. Instead of the in situ protein-templated azide-alkyne cycloaddition reaction occurring at a localized, sequestered enzyme active center as previously shown, we demonstrate that the in situ reaction can take place at the subunit interfaces of an oligomeric protein and can thus be used as a tool for identifying novel candidate nAChR ligands. The crystal structure of one of the in situ-formed triazole-AChBP complexes shows binding poses and molecular determinants of interactions predicted from structures of known agonists and antagonists. Hence, the click chemistry approach with an in situ template of a receptor provides a novel synthetic avenue for generating candidate agonists and antagonists for ligand-gated ion channels.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Mapping the elusive neonicotinoid binding site

Motohiro Tomizawa; Todd T. Talley; David A. Maltby; Kathleen A. Durkin; Katalin F. Medzihradszky; Alma L. Burlingame; Palmer Taylor; John E. Casida

Two types of structurally similar nicotinic agonists have very different biological and physicochemical properties. Neonicotinoids, important insecticides including imidacloprid and thiacloprid, are nonprotonated and selective for insects and their nicotinic receptors, whereas nicotinoids such as nicotine and epibatidine are cationic and selective for mammalian systems. We discovered that a mollusk acetylcholine binding protein (AChBP), as a structural surrogate for the extracellular ligand-binding domain of the nicotinic receptor, is similarly sensitive to neonicotinoids and nicotinoids. It therefore seemed possible that the proposed very different interactions of the neonicotinoids and nicotinoids might be examined with a single AChBP by using optimized azidochloropyridinyl photoaffinity probes. Two azidoneonicotinoids with a nitro or cyano group were compared with the corresponding desnitro or descyano azidonicotinoids. The four photoactivated nitrene probes modified AChBP with up to one agonist for each subunit based on analysis of the intact derivatized protein. Identical modification sites were observed by collision-induced dissociation analysis for the neonicotinoids and nicotinoids with similar labeling frequency of Tyr-195 of loop C and Met-116 of loop E at the subunit interface. The nitro- or cyano-substituted guanidine/amidine planes of the neonicotinoids provide a unique electronic conjugation system to interact with loop C Tyr-188. The neonicotinoid nitro oxygen and cyano nitrogen contact loop C Cys-190/Ser-189, whereas the cationic head of the corresponding nicotinoids is inverted for hydrogen-bonding and cation-π contact with Trp-147 and Tyr-93. These structural models based on AChBP directly map the elusive neonicotinoid binding site and further describe the molecular determinants of agonists on nicotinic receptors.


Journal of Biological Chemistry | 2004

Acrylodan conjugated cysteine side chains reveal conformational state and ligand site locations of the acetylcholine binding protein

Ryan E. Hibbs; Todd T. Talley; Palmer Taylor

We undertook cysteine substitution mutagenesis and fluorophore conjugation at selected residue positions to map sites of ligand binding and changes in solvent exposure of the acetylcholine-binding protein from Lymnaea stagnalis, a nicotinic receptor surrogate. Acrylodan fluorescence emission is highly sensitive to its local environment, and when bound to protein, exhibits changes in both intensity and emission wavelength that are reflected in the degree of solvent exclusion and the effective dielectric constant of the environment of the fluorophore. Hence, cysteine mutants were generated based on the acetylcholine-binding protein crystal structure and predicted ligand binding sites, and fluorescence parameters were assayed on the acrylodan-conjugated proteins. This approach allows one to analyze the environment around the conjugated fluorophore side chain and the changes induced by bound ligand. Introduction of an acrylodan-cysteine conjugate at position 178 yields a large blue shift with α-bungarotoxin association, whereas the agonists and alkaloid antagonists induce red shifts reflecting solvent exposure at this position. Such residue-selective changes in fluorescence parameters suggest that certain ligands can induce distinct conformational states of the binding protein, and that mutually exclusive binding results from disparate portals of entry to and orientations of the bound α-toxin and smaller acetylcholine congeners at the binding pocket. Labeling at other residue positions around the predicted binding pocket also reveals distinctive spectral changes for α-bungarotoxin, agonists, and alkaloid antagonists.


Journal of Biological Chemistry | 2006

α-Conotoxin OmIA Is a Potent Ligand for the Acetylcholine-binding Protein as Well as α3β2 and α7 Nicotinic Acetylcholine Receptors

Todd T. Talley; Baldomero M. Olivera; Kyou Hoon Han; Sean Christensen; Cheryl Dowell; Igor Tsigelny; Kwok Yiu Ho; Palmer Taylor; J. Michael McIntosh

The molluskan acetylcholine-binding protein (AChBP) is a homolog of the extracellular binding domain of the pentameric ligand-gated ion channel family. AChBP most closely resembles the α-subunit of nicotinic acetylcholine receptors and in particular the homomeric α7 nicotinic receptor. We report the isolation and characterization of an α-conotoxin that has the highest known affinity for the Lymnaea AChBP and also potently blocks the α7 nAChR subtype when expressed in Xenopus oocytes. Remarkably, the peptide also has high affinity for the α3β2 nAChR indicating that α-conotoxin OmIA in combination with the AChBP may serve as a model system for understanding the binding determinants of α3β2 nAChRs. α-Conotoxin OmIA was purified from the venom of Conus omaria. It is a 17-amino-acid, two-disulfide bridge peptide. The ligand is the first α-conotoxin with higher affinity for the closely related receptor subtypes, α3β2 versus α6β2, and selectively blocks these two subtypes when compared with α2β2, α4β2, and α1β1δϵ nAChRs.

Collaboration


Dive into the Todd T. Talley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John E. Casida

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryan E. Hibbs

University of California

View shared research outputs
Top Co-Authors

Avatar

Yves Bourne

Aix-Marseille University

View shared research outputs
Researchain Logo
Decentralizing Knowledge