Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Todd W. Harris is active.

Publication


Featured researches published by Todd W. Harris.


PLOS Biology | 2003

The genome sequence of Caenorhabditis briggsae: A platform for comparative genomics

Lincoln Stein; Zhirong Bao; Darin Blasiar; Thomas Blumenthal; Michael R. Brent; Nansheng Chen; Asif T. Chinwalla; Laura Clarke; Chris Clee; Avril Coghlan; Alan Coulson; Peter D'Eustachio; David H. A. Fitch; Lucinda A. Fulton; Robert Fulton; Sam Griffiths-Jones; Todd W. Harris; LaDeana W. Hillier; Ravi S. Kamath; Patricia E. Kuwabara; Elaine R. Mardis; Marco A. Marra; Tracie L. Miner; Patrick Minx; James C. Mullikin; Robert W. Plumb; Jane Rogers; Jacqueline E. Schein; Marc Sohrmann; John Spieth

The soil nematodes Caenorhabditis briggsae and Caenorhabditis elegans diverged from a common ancestor roughly 100 million years ago and yet are almost indistinguishable by eye. They have the same chromosome number and genome sizes, and they occupy the same ecological niche. To explore the basis for this striking conservation of structure and function, we have sequenced the C. briggsae genome to a high-quality draft stage and compared it to the finished C. elegans sequence. We predict approximately 19,500 protein-coding genes in the C. briggsae genome, roughly the same as in C. elegans. Of these, 12,200 have clear C. elegans orthologs, a further 6,500 have one or more clearly detectable C. elegans homologs, and approximately 800 C. briggsae genes have no detectable matches in C. elegans. Almost all of the noncoding RNAs (ncRNAs) known are shared between the two species. The two genomes exhibit extensive colinearity, and the rate of divergence appears to be higher in the chromosomal arms than in the centers. Operons, a distinctive feature of C. elegans, are highly conserved in C. briggsae, with the arrangement of genes being preserved in 96% of cases. The difference in size between the C. briggsae (estimated at approximately 104 Mbp) and C. elegans (100.3 Mbp) genomes is almost entirely due to repetitive sequence, which accounts for 22.4% of the C. briggsae genome in contrast to 16.5% of the C. elegans genome. Few, if any, repeat families are shared, suggesting that most were acquired after the two species diverged or are undergoing rapid evolution. Coclustering the C. elegans and C. briggsae proteins reveals 2,169 protein families of two or more members. Most of these are shared between the two species, but some appear to be expanding or contracting, and there seem to be as many as several hundred novel C. briggsae gene families. The C. briggsae draft sequence will greatly improve the annotation of the C. elegans genome. Based on similarity to C. briggsae, we found strong evidence for 1,300 new C. elegans genes. In addition, comparisons of the two genomes will help to understand the evolutionary forces that mold nematode genomes.


Nucleic Acids Research | 2004

WormBase: a multi-species resource for nematode biology and genomics.

Todd W. Harris; Nansheng Chen; Fiona Cunningham; Marcela K. Tello-Ruiz; Igor Antoshechkin; Carol Bastiani; Tamberlyn Bieri; Darin Blasiar; Keith Bradnam; Juancarlos Chan; Chao-Kung Chen; Wen J. Chen; Paul H. Davis; Eimear E. Kenny; Ranjana Kishore; Daniel Lawson; Raymond Y. N. Lee; Hans-Michael Müller; Cecilia Nakamura; Philip Ozersky; Andrei Petcherski; Anthony Rogers; Aniko Sabo; Erich M. Schwarz; Kimberly Van Auken; Qinghua Wang; Richard Durbin; John Spieth; Paul W. Sternberg; Lincoln Stein

WormBase (http://www.wormbase.org/) is the central data repository for information about Caenorhabditis elegans and related nematodes. As a model organism database, WormBase extends beyond the genomic sequence, integrating experimental results with extensively annotated views of the genome. The WormBase Consortium continues to expand the biological scope and utility of WormBase with the inclusion of large-scale genomic analyses, through active data and literature curation, through new analysis and visualization tools, and through refinement of the user interface. Over the past year, the nearly complete genomic sequence and comparative analyses of the closely related species Caenorhabditis briggsae have been integrated into WormBase, including gene predictions, ortholog assignments and a new synteny viewer to display the relationships between the two species. Extensive site-wide refinement of the user interface now provides quick access to the most frequently accessed resources and a consistent browsing experience across the site. Unified single-page views now provide complete summaries of commonly accessed entries like genes. These advances continue to increase the utility of WormBase for C.elegans researchers, as well as for those researchers exploring problems in functional and comparative genomics in the context of a powerful genetic system.


Nucleic Acids Research | 2010

WormBase: a comprehensive resource for nematode research

Todd W. Harris; Igor Antoshechkin; Tamberlyn Bieri; Darin Blasiar; Juancarlos Chan; Wen J. Chen; Norie De La Cruz; Paul H. Davis; Margaret Duesbury; Ruihua Fang; Jolene S. Fernandes; Michael Han; Ranjana Kishore; Raymond Y. N. Lee; Hans-Michael Müller; Cecilia Nakamura; Philip Ozersky; Andrei Petcherski; Arun Rangarajan; Anthony Rogers; Gary Schindelman; Erich M. Schwarz; Mary Ann Tuli; Kimberly Van Auken; Daniel Wang; Xiaodong Wang; Gary Williams; Karen Yook; Richard Durbin; Lincoln Stein

WormBase (http://www.wormbase.org) is a central data repository for nematode biology. Initially created as a service to the Caenorhabditis elegans research field, WormBase has evolved into a powerful research tool in its own right. In the past 2 years, we expanded WormBase to include the complete genomic sequence, gene predictions and orthology assignments from a range of related nematodes. This comparative data enrich the C. elegans data with improved gene predictions and a better understanding of gene function. In turn, they bring the wealth of experimental knowledge of C. elegans to other systems of medical and agricultural importance. Here, we describe new species and data types now available at WormBase. In addition, we detail enhancements to our curatorial pipeline and website infrastructure to accommodate new genomes and an extensive user base.


Nature | 2011

Ascaris suum draft genome

Aaron R. Jex; Shiping Liu; Bo Li; Neil D. Young; Ross S. Hall; Yingrui Li; Linfeng Yang; Na Zeng; Xun Xu; Zijun Xiong; Fangyuan Chen; Xuan Wu; Guojie Zhang; Xiaodong Fang; Yi Kang; Garry A. Anderson; Todd W. Harris; Bronwyn E. Campbell; Johnny Vlaminck; Tao Wang; Cinzia Cantacessi; Erich M. Schwarz; Shoba Ranganathan; Peter Geldhof; Peter Nejsum; Paul W. Sternberg; Huanming Yang; Jun Wang; Jian Wang; Robin B. Gasser

Parasitic diseases have a devastating, long-term impact on human health, welfare and food production worldwide. More than two billion people are infected with geohelminths, including the roundworms Ascaris (common roundworm), Necator and Ancylostoma (hookworms), and Trichuris (whipworm), mainly in developing or impoverished nations of Asia, Africa and Latin America. In humans, the diseases caused by these parasites result in about 135,000 deaths annually, with a global burden comparable with that of malaria or tuberculosis in disability-adjusted life years. Ascaris alone infects around 1.2 billion people and, in children, causes nutritional deficiency, impaired physical and cognitive development and, in severe cases, death. Ascaris also causes major production losses in pigs owing to reduced growth, failure to thrive and mortality. The Ascaris–swine model makes it possible to study the parasite, its relationship with the host, and ascariasis at the molecular level. To enable such molecular studies, we report the 273 megabase draft genome of Ascaris suum and compare it with other nematode genomes. This genome has low repeat content (4.4%) and encodes about 18,500 protein-coding genes. Notably, the A. suum secretome (about 750 molecules) is rich in peptidases linked to the penetration and degradation of host tissues, and an assemblage of molecules likely to modulate or evade host immune responses. This genome provides a comprehensive resource to the scientific community and underpins the development of new and urgently needed interventions (drugs, vaccines and diagnostic tests) against ascariasis and other nematodiases.


Nucleic Acids Research | 2004

WormBase: a comprehensive data resource for Caenorhabditis biology and genomics

Nansheng Chen; Todd W. Harris; Igor Antoshechkin; Carol Bastiani; Tamberlyn Bieri; Darin Blasiar; Keith Bradnam; Payan Canaran; Juancarlos Chan; Chao-Kung Chen; Wen J. Chen; Fiona Cunningham; Paul H. Davis; Eimear E. Kenny; Ranjana Kishore; Daniel Lawson; Raymond Y. N. Lee; Hans-Michael Müller; Cecilia Nakamura; Shraddha Pai; Philip Ozersky; Andrei Petcherski; Anthony Rogers; Aniko Sabo; Erich M. Schwarz; Kimberly Van Auken; Qinghua Wang; Richard Durbin; John Spieth; Paul W. Sternberg

WormBase (http://www.wormbase.org), the model organism database for information about Caenorhabditis elegans and related nematodes, continues to expand in breadth and depth. Over the past year, WormBase has added multiple large-scale datasets including SAGE, interactome, 3D protein structure datasets and NCBI KOGs. To accommodate this growth, the International WormBase Consortium has improved the user interface by adding new features to aid in navigation, visualization of large-scale datasets, advanced searching and data mining. Internally, we have restructured the database models to rationalize the representation of genes and to prepare the system to accept the genome sequences of three additional Caenorhabditis species over the coming year.


Nucleic Acids Research | 2012

WormBase 2012: more genomes, more data, new website

Karen Yook; Todd W. Harris; Tamberlyn Bieri; Abigail Cabunoc; Juancarlos Chan; Wen J. Chen; Paul H. Davis; Norie De La Cruz; Adrian Duong; Ruihua Fang; Uma Ganesan; Christian A. Grove; Kevin L. Howe; Snehalata Kadam; Ranjana Kishore; Raymond Y. N. Lee; Yuling Li; Hans-Michael Müller; Cecilia Nakamura; Bill Nash; Philip Ozersky; Michael Paulini; Daniela Raciti; Arun Rangarajan; Gary Schindelman; Xiaoqi Shi; Erich M. Schwarz; Mary Ann Tuli; Kimberly Van Auken; Daniel Wang

Since its release in 2000, WormBase (http://www.wormbase.org) has grown from a small resource focusing on a single species and serving a dedicated research community, to one now spanning 15 species essential to the broader biomedical and agricultural research fields. To enhance the rate of curation, we have automated the identification of key data in the scientific literature and use similar methodology for data extraction. To ease access to the data, we are collaborating with journals to link entities in research publications to their report pages at WormBase. To facilitate discovery, we have added new views of the data, integrated large-scale datasets and expanded descriptions of models for human disease. Finally, we have introduced a dramatic overhaul of the WormBase website for public beta testing. Designed to balance complexity and usability, the new site is species-agnostic, highly customizable, and interactive. Casual users and developers alike will be able to leverage the public RESTful application programming interface (API) to generate custom data mining solutions and extensions to the site. We report on the growth of our database and on our work in keeping pace with the growing demand for data, efforts to anticipate the requirements of users and new collaborations with the larger science community.


Database | 2011

BioMart Central Portal: an open database network for the biological community

Jonathan M. Guberman; J. Ai; Olivier Arnaiz; Joachim Baran; Andrew Blake; Richard Baldock; Claude Chelala; David Croft; Anthony Cros; Rosalind J. Cutts; A. Di Génova; Simon A. Forbes; T. Fujisawa; Emanuela Gadaleta; David Goodstein; Gunes Gundem; Bernard Haggarty; Syed Haider; Matthew Hall; Todd W. Harris; Robin Haw; Songnian Hu; Simon J. Hubbard; Jack Hsu; Vivek Iyer; Philip Jones; Toshiaki Katayama; Rhoda Kinsella; Lei Kong; Daniel Lawson

BioMart Central Portal is a first of its kind, community-driven effort to provide unified access to dozens of biological databases spanning genomics, proteomics, model organisms, cancer data, ontology information and more. Anybody can contribute an independently maintained resource to the Central Portal, allowing it to be exposed to and shared with the research community, and linking it with the other resources in the portal. Users can take advantage of the common interface to quickly utilize different sources without learning a new system for each. The system also simplifies cross-database searches that might otherwise require several complicated steps. Several integrated tools streamline common tasks, such as converting between ID formats and retrieving sequences. The combination of a wide variety of databases, an easy-to-use interface, robust programmatic access and the array of tools make Central Portal a one-stop shop for biological data querying. Here, we describe the structure of Central Portal and show example queries to demonstrate its capabilities. Database URL: http://central.biomart.org.


Nucleic Acids Research | 2012

FungiDB: an integrated functional genomics database for fungi

Jason E. Stajich; Todd W. Harris; Brian P. Brunk; John Brestelli; Steve Fischer; Omar S. Harb; Jessica C. Kissinger; Wei Li; Vishal Nayak; Deborah F. Pinney; Christian J. Stoeckert; David S. Roos

FungiDB (http://FungiDB.org) is a functional genomic resource for pan-fungal genomes that was developed in partnership with the Eukaryotic Pathogen Bioinformatic resource center (http://EuPathDB.org). FungiDB uses the same infrastructure and user interface as EuPathDB, which allows for sophisticated and integrated searches to be performed using an intuitive graphical system. The current release of FungiDB contains genome sequence and annotation from 18 species spanning several fungal classes, including the Ascomycota classes, Eurotiomycetes, Sordariomycetes, Saccharomycetes and the Basidiomycota orders, Pucciniomycetes and Tremellomycetes, and the basal ‘Zygomycete’ lineage Mucormycotina. Additionally, FungiDB contains cell cycle microarray data, hyphal growth RNA-sequence data and yeast two hybrid interaction data. The underlying genomic sequence and annotation combined with functional data, additional data from the FungiDB standard analysis pipeline and the ability to leverage orthology provides a powerful resource for in silico experimentation.


Nucleic Acids Research | 2014

WormBase 2014: new views of curated biology

Todd W. Harris; Joachim Baran; Tamberlyn Bieri; Abigail Cabunoc; Juancarlos Chan; Wen J. Chen; Paul H. Davis; James Done; Christian A. Grove; Kevin L. Howe; Ranjana Kishore; Raymond Y. N. Lee; Yuling Li; Hans-Michael Müller; Cecilia Nakamura; Philip Ozersky; Michael Paulini; Daniela Raciti; Gary Schindelman; Mary Ann Tuli; Kimberly Van Auken; Daniel Wang; Xiaodong Wang; Gary Williams; Jennifer Wong; Karen Yook; Tim Schedl; Jonathan Hodgkin; Matthew Berriman; Paul J. Kersey

WormBase (http://www.wormbase.org/) is a highly curated resource dedicated to supporting research using the model organism Caenorhabditis elegans. With an electronic history predating the World Wide Web, WormBase contains information ranging from the sequence and phenotype of individual alleles to genome-wide studies generated using next-generation sequencing technologies. In recent years, we have expanded the contents to include data on additional nematodes of agricultural and medical significance, bringing the knowledge of C. elegans to bear on these systems and providing support for underserved research communities. Manual curation of the primary literature remains a central focus of the WormBase project, providing users with reliable, up-to-date and highly cross-linked information. In this update, we describe efforts to organize the original atomized and highly contextualized curated data into integrated syntheses of discrete biological topics. Next, we discuss our experiences coping with the vast increase in available genome sequences made possible through next-generation sequencing platforms. Finally, we describe some of the features and tools of the new WormBase Web site that help users better find and explore data of interest.


Nucleic Acids Research | 2016

WormBase 2016: expanding to enable helminth genomic research

Kevin L. Howe; Bruce J. Bolt; Scott Cain; Juancarlos Chan; Wen J. Chen; Paul Davis; James Done; Thomas A. Down; Sibyl Gao; Christian A. Grove; Todd W. Harris; Ranjana Kishore; Raymond Y. N. Lee; Jane Lomax; Yuling Li; Hans-Michael Müller; Cecilia Nakamura; Paulo A. S. Nuin; Michael Paulini; Daniela Raciti; Gary Schindelman; Eleanor Stanley; Mary Ann Tuli; Kimberly Van Auken; Daniel Wang; Xiaodong Wang; Gary Williams; Adam Wright; Karen Yook; Matthew Berriman

WormBase (www.wormbase.org) is a central repository for research data on the biology, genetics and genomics of Caenorhabditis elegans and other nematodes. The project has evolved from its original remit to collect and integrate all data for a single species, and now extends to numerous nematodes, ranging from evolutionary comparators of C. elegans to parasitic species that threaten plant, animal and human health. Research activity using C. elegans as a model system is as vibrant as ever, and we have created new tools for community curation in response to the ever-increasing volume and complexity of data. To better allow users to navigate their way through these data, we have made a number of improvements to our main website, including new tools for browsing genomic features and ontology annotations. Finally, we have developed a new portal for parasitic worm genomes. WormBase ParaSite (parasite.wormbase.org) contains all publicly available nematode and platyhelminth annotated genome sequences, and is designed specifically to support helminth genomic research.

Collaboration


Dive into the Todd W. Harris's collaboration.

Top Co-Authors

Avatar

Lincoln Stein

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Ranjana Kishore

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Raymond Y. N. Lee

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Hans-Michael Müller

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Juancarlos Chan

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Kimberly Van Auken

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Wen J. Chen

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Cecilia Nakamura

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Paul W. Sternberg

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge