Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Todd Wylie is active.

Publication


Featured researches published by Todd Wylie.


The New England Journal of Medicine | 2009

Recurring Mutations Found by Sequencing an Acute Myeloid Leukemia Genome

Elaine R. Mardis; Li Ding; David J. Dooling; David E. Larson; Michael D. McLellan; Ken Chen; Daniel C. Koboldt; Robert S. Fulton; Kim D. Delehaunty; Sean McGrath; Lucinda A. Fulton; Devin P. Locke; Vincent Magrini; Rachel Abbott; Tammi L. Vickery; Jerry S. Reed; Jody S. Robinson; Todd Wylie; Scott M. Smith; Lynn K. Carmichael; James M. Eldred; Christopher C. Harris; Jason Walker; Joshua B. Peck; Feiyu Du; Adam F. Dukes; Gabriel E. Sanderson; Anthony M. Brummett; Eric Clark; Joshua F. McMichael

BACKGROUND The full complement of DNA mutations that are responsible for the pathogenesis of acute myeloid leukemia (AML) is not yet known. METHODS We used massively parallel DNA sequencing to obtain a very high level of coverage (approximately 98%) of a primary, cytogenetically normal, de novo genome for AML with minimal maturation (AML-M1) and a matched normal skin genome. RESULTS We identified 12 acquired (somatic) mutations within the coding sequences of genes and 52 somatic point mutations in conserved or regulatory portions of the genome. All mutations appeared to be heterozygous and present in nearly all cells in the tumor sample. Four of the 64 mutations occurred in at least 1 additional AML sample in 188 samples that were tested. Mutations in NRAS and NPM1 had been identified previously in patients with AML, but two other mutations had not been identified. One of these mutations, in the IDH1 gene, was present in 15 of 187 additional AML genomes tested and was strongly associated with normal cytogenetic status; it was present in 13 of 80 cytogenetically normal samples (16%). The other was a nongenic mutation in a genomic region with regulatory potential and conservation in higher mammals; we detected it in one additional AML tumor. The AML genome that we sequenced contains approximately 750 point mutations, of which only a small fraction are likely to be relevant to pathogenesis. CONCLUSIONS By comparing the sequences of tumor and skin genomes of a patient with AML-M1, we have identified recurring mutations that may be relevant for pathogenesis.


Nature | 2008

DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome

Timothy J. Ley; Elaine R. Mardis; Li Ding; Bob Fulton; Michael D. McLellan; Ken Chen; David J. Dooling; Brian H. Dunford-Shore; Sean McGrath; Matthew Hickenbotham; Lisa Cook; Rachel Abbott; David E. Larson; Dan Koboldt; Craig S. Pohl; Scott M. Smith; Amy Hawkins; Scott Abbott; Devin P. Locke; LaDeana W. Hillier; Tracie L. Miner; Lucinda Fulton; Vincent Magrini; Todd Wylie; Jarret Glasscock; Joshua J. Conyers; Nathan Sander; Xiaoqi Shi; John R. Osborne; Patrick Minx

Acute myeloid leukaemia is a highly malignant haematopoietic tumour that affects about 13,000 adults in the United States each year. The treatment of this disease has changed little in the past two decades, because most of the genetic events that initiate the disease remain undiscovered. Whole-genome sequencing is now possible at a reasonable cost and timeframe to use this approach for the unbiased discovery of tumour-specific somatic mutations that alter the protein-coding genes. Here we present the results obtained from sequencing a typical acute myeloid leukaemia genome, and its matched normal counterpart obtained from the same patient’s skin. We discovered ten genes with acquired mutations; two were previously described mutations that are thought to contribute to tumour progression, and eight were new mutations present in virtually all tumour cells at presentation and relapse, the function of which is not yet known. Our study establishes whole-genome sequencing as an unbiased method for discovering cancer-initiating mutations in previously unidentified genes that may respond to targeted therapies.


Bioinformatics | 2009

VarScan: variant detection in massively parallel sequencing of individual and pooled samples

Daniel C. Koboldt; Ken Chen; Todd Wylie; David E. Larson; Michael D. McLellan; Elaine R. Mardis; George M. Weinstock; Richard Wilson; Li Ding

SUMMARY Massively parallel sequencing technologies hold incredible promise for the study of DNA sequence variation, particularly the identification of variants affecting human disease. The unprecedented throughput and relatively short read lengths of Roche/454, Illumina/Solexa, and other platforms have spurred development of a new generation of sequence alignment algorithms. Yet detection of sequence variants based on short read alignments remains challenging, and most currently available tools are limited to a single platform or aligner type. We present VarScan, an open source tool for variant detection that is compatible with several short read aligners. We demonstrate VarScans ability to detect SNPs and indels with high sensitivity and specificity, in both Roche/454 sequencing of individuals and deep Illumina/Solexa sequencing of pooled samples.


Nature | 2012

Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting

Hirokazu Matsushita; Matthew D. Vesely; Daniel C. Koboldt; Charles G. Rickert; Ravindra Uppaluri; Vincent Magrini; Cora D. Arthur; J. Michael White; Yee Shiuan Chen; Lauren Shea; Jasreet Hundal; Michael C. Wendl; Ryan Demeter; Todd Wylie; James P. Allison; Mark J. Smyth; Lloyd J. Old; Elaine R. Mardis; Robert D. Schreiber

Cancer immunoediting, the process by which the immune system controls tumour outgrowth and shapes tumour immunogenicity, is comprised of three phases: elimination, equilibrium and escape. Although many immune components that participate in this process are known, its underlying mechanisms remain poorly defined. A central tenet of cancer immunoediting is that T-cell recognition of tumour antigens drives the immunological destruction or sculpting of a developing cancer. However, our current understanding of tumour antigens comes largely from analyses of cancers that develop in immunocompetent hosts and thus may have already been edited. Little is known about the antigens expressed in nascent tumour cells, whether they are sufficient to induce protective antitumour immune responses or whether their expression is modulated by the immune system. Here, using massively parallel sequencing, we characterize expressed mutations in highly immunogenic methylcholanthrene-induced sarcomas derived from immunodeficient Rag2−/− mice that phenotypically resemble nascent primary tumour cells. Using class I prediction algorithms, we identify mutant spectrin-β2 as a potential rejection antigen of the d42m1 sarcoma and validate this prediction by conventional antigen expression cloning and detection. We also demonstrate that cancer immunoediting of d42m1 occurs via a T-cell-dependent immunoselection process that promotes outgrowth of pre-existing tumour cell clones lacking highly antigenic mutant spectrin-β2 and other potential strong antigens. These results demonstrate that the strong immunogenicity of an unedited tumour can be ascribed to expression of highly antigenic mutant proteins and show that outgrowth of tumour cells that lack these strong antigens via a T-cell-dependent immunoselection process represents one mechanism of cancer immunoediting.


Nature Methods | 2008

Whole-genome sequencing and variant discovery in C. elegans

LaDeana W. Hillier; Gabor T. Marth; Aaron R. Quinlan; David J. Dooling; Ginger Fewell; Derek Barnett; Paul Fox; Jarret Glasscock; Matthew Hickenbotham; Weichun Huang; Vincent Magrini; Ryan Richt; Sacha Sander; Donald A Stewart; Michael Stromberg; Eric F. Tsung; Todd Wylie; Tim Schedl; Richard Wilson; Elaine R. Mardis

Massively parallel sequencing instruments enable rapid and inexpensive DNA sequence data production. Because these instruments are new, their data require characterization with respect to accuracy and utility. To address this, we sequenced a Caernohabditis elegans N2 Bristol strain isolate using the Solexa Sequence Analyzer, and compared the reads to the reference genome to characterize the data and to evaluate coverage and representation. Massively parallel sequencing facilitates strain-to-reference comparison for genome-wide sequence variant discovery. Owing to the short-read-length sequences produced, we developed a revised approach to determine the regions of the genome to which short reads could be uniquely mapped. We then aligned Solexa reads from C. elegans strain CB4858 to the reference, and screened for single-nucleotide polymorphisms (SNPs) and small indels. This study demonstrates the utility of massively parallel short read sequencing for whole genome resequencing and for accurate discovery of genome-wide polymorphisms.


Genome Biology | 2003

Analysis and functional classification of transcripts from the nematode Meloidogyne incognita

James P. McCarter; Makedonka Mitreva; John Martin; Mike Dante; Todd Wylie; Uma Rao; Deana Pape; Yvette Bowers; Brenda Theising; Claire V Murphy; Andrew P. Kloek; Brandi Chiapelli; Sandra W. Clifton; David McK. Bird; Robert H. Waterston

BackgroundPlant parasitic nematodes are major pathogens of most crops. Molecular characterization of these species as well as the development of new techniques for control can benefit from genomic approaches. As an entrée to characterizing plant parasitic nematode genomes, we analyzed 5,700 expressed sequence tags (ESTs) from second-stage larvae (L2) of the root-knot nematode Meloidogyne incognita.ResultsFrom these, 1,625 EST clusters were formed and classified by function using the Gene Ontology (GO) hierarchy and the Kyoto KEGG database. L2 larvae, which represent the infective stage of the life cycle before plant invasion, express a diverse array of ligand-binding proteins and abundant cytoskeletal proteins. L2 are structurally similar to Caenorhabditis elegans dauer larva and the presence of transcripts encoding glyoxylate pathway enzymes in the M. incognita clusters suggests that root-knot nematode larvae metabolize lipid stores while in search of a host. Homology to other species was observed in 79% of translated cluster sequences, with the C. elegans genome providing more information than any other source. In addition to identifying putative nematode-specific and Tylenchida-specific genes, sequencing revealed previously uncharacterized horizontal gene transfer candidates in Meloidogyne with high identity to rhizobacterial genes including homologs of nodL acetyltransferase and novel cellulases.ConclusionsWith sequencing from plant parasitic nematodes accelerating, the approaches to transcript characterization described here can be applied to more extensive datasets and also provide a foundation for more complex genome analyses.


Nature Genetics | 1999

An encyclopedia of mouse genes

Marco A. Marra; LaDeana W. Hillier; Tamara A. Kucaba; Melissa Allen; Robert Barstead; Catherine Beck; Angela Blistain; Maria F. Bonaldo; Yvette Bowers; Louise Bowles; Marco Cardenas; Ann Chamberlain; Julie Chappell; Sandra W. Clifton; Anthony Favello; Steve Geisel; Marilyn Gibbons; Njata Harvey; Francesca S. Hill; Yolanda Jackson; Sophie Kohn; Greg Lennon; Elaine R. Mardis; John Martin; LeeAnne Mila; Rhonda McCann; Richard Morales; Deana Pape; Barry Person; Christa Prange

The laboratory mouse is the premier model system for studies of mammalian development due to the powerful classical genetic analysis possible (see also the Jackson Laboratory web site, http://www.jax.org/) and the ever–expanding collection of molecular tools. To enhance the utility of the mouse system, we initiated a program to generate a large database of expressed sequence tags (ESTs) that can provide rapid access to genes. Of particular significance was the possibility that cDNA libraries could be prepared from very early stages of development, a situation unrealized in human EST projects. We report here the development of a comprehensive database of ESTs for the mouse. The project, initiated in March 1996, has focused on 5´ end sequences from directionally cloned, oligo–dT primed cDNA libraries. As of 23 October 1998, 352,040 sequences had been generated, annotated and deposited in dbEST, where they comprised 93% of the total ESTs available for mouse. EST data are versatile and have been applied to gene identification, comparative sequence analysis, comparative gene mapping and candidate disease gene identification, genome sequence annotation, microarray development and the development of gene–based map resources.


Blood | 2013

Genomic impact of transient low-dose decitabine treatment on primary AML cells.

Jeffery M. Klco; David H. Spencer; Tamara Lamprecht; Shawn M. Sarkaria; Todd Wylie; Vincent Magrini; Jasreet Hundal; Jason Walker; Nobish Varghese; Petra Erdmann-Gilmore; Cheryl F. Lichti; Matthew R. Meyer; R. Reid Townsend; Richard Wilson; Elaine R. Mardis; Timothy J. Ley

Acute myeloid leukemia (AML) is characterized by dysregulated gene expression and abnormal patterns of DNA methylation; the relationship between these events is unclear. Many AML patients are now being treated with hypomethylating agents, such as decitabine (DAC), although the mechanisms by which it induces remissions remain unknown. The goal of this study was to use a novel stromal coculture assay that can expand primary AML cells to identify the immediate changes induced by DAC with a dose (100nM) that decreases total 5-methylcytosine content and reactivates imprinted genes (without causing myeloid differentiation, which would confound downstream genomic analyses). Using array-based technologies, we found that DAC treatment caused global hypomethylation in all samples (with a preference for regions with higher levels of baseline methylation), yet there was limited correlation between changes in methylation and gene expression. Moreover, the patterns of methylation and gene expression across the samples were primarily determined by the intrinsic properties of the primary cells, rather than DAC treatment. Although DAC induces hypomethylation, we could not identify canonical target genes that are altered by DAC in primary AML cells, suggesting that the mechanism of action of DAC is more complex than previously recognized.


Nucleic Acids Research | 2004

Nematode.net: a tool for navigating sequences from parasitic and free‐living nematodes

Todd Wylie; John Martin; Michael Dante; Makedonka Mitreva; Sandra W. Clifton; Asif T. Chinwalla; Robert H. Waterston; Richard Wilson; James P. McCarter

Nematode.net (www.nematode.net) is a web- accessible resource for investigating gene sequences from nematode genomes. The database is an outgrowth of the parasitic nematode EST project at Washington Universitys Genome Sequencing Center (GSC), St Louis. A sister project at the University of Edinburgh and the Sanger Institute is also underway. More than 295,000 ESTs have been generated from >30 nematodes other than Caenorhabditis elegans including key parasites of humans, animals and plants. Nematode.net currently provides NemaGene EST cluster consensus sequence, enhanced online BLAST search tools, functional classifications of cluster sequences and comprehensive information concerning the ongoing generation of nematode genome data. The long-term goal of nematode.net is to provide the scientific community with the highest quality sequence information and tools for studying these diverse species.


Clinical Infectious Diseases | 2014

Sepsis From the Gut: The Enteric Habitat of Bacteria That Cause Late-Onset Neonatal Bloodstream Infections

Mike A. Carl; I. Malick Ndao; A. Cody Springman; Shannon D. Manning; James R. Johnson; Brian Johnston; Carey-Ann D. Burnham; Erica Weinstock; George M. Weinstock; Todd Wylie; Makedonka Mitreva; Sahar Abubucker; Yanjiao Zhou; Harold J. Stevens; Carla Hall-Moore; Samuel Julian; Nurmohammad Shaikh; Barbara B. Warner; Phillip I. Tarr

BACKGROUND Late-onset sepsis is a major problem in neonatology, but the habitat of the pathogens before bloodstream invasion occurs is not well established. METHODS We examined prospectively collected stools from premature infants with sepsis to find pathogens that subsequently invaded their bloodstreams, and sought the same organisms in stools of infants without sepsis. Culture-based techniques were used to isolate stool bacteria that provisionally matched the bloodstream organisms, which were then genome sequenced to confirm or refute commonality. RESULTS Of 11 children with late-onset neonatal bloodstream infections, 7 produced at least 1 stool that contained group B Streptococcus (GBS), Serratia marcescens, or Escherichia coli before their sepsis episode with provisionally matching organisms. Of 96 overlap comparison subjects without sepsis temporally associated with these cases, 4 were colonized with provisionally matching GBS or S. marcescens. Of 175 comparisons of stools from randomly selected infants without sepsis, 1 contained a GBS (this infant had also served as an overlap comparison subject and both specimens contained provisionally matching GBS). Genome sequencing confirmed common origin of provisionally matching fecal and blood isolates. The invasive E. coli were present in all presepticemic stools since birth, but gut colonization with GBS and S. marcescens occurred closer to time of bloodstream infection. CONCLUSIONS The neonatal gut harbors sepsis-causing pathogens, but such organisms are not inevitable members of the normal microbiota. Surveillance microbiology, decolonization, and augmented hygiene might prevent dissemination of invasive bacteria between and within premature infants.

Collaboration


Dive into the Todd Wylie's collaboration.

Top Co-Authors

Avatar

Vincent Magrini

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Elaine R. Mardis

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Kristine M. Wylie

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

John Martin

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Timothy J. Ley

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Makedonka Mitreva

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Sandra W. Clifton

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Daniel C. Koboldt

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Daniel C. Link

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Gregory A. Storch

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge