Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tohru Hosoyama is active.

Publication


Featured researches published by Tohru Hosoyama.


Journal of Cellular and Molecular Medicine | 2015

The c‐MYC‐ABCB5 axis plays a pivotal role in 5‐fluorouracil resistance in human colon cancer cells

Naruji Kugimiya; Arata Nishimoto; Tohru Hosoyama; Koji Ueno; Tadahiko Enoki; Tao-Sheng Li; Kimikazu Hamano

c‐MYC overexpression is frequently observed in various cancers including colon cancer and regulates many biological activities such as aberrant cell proliferation, apoptosis, genomic instability, immortalization and drug resistance. However, the mechanism by which c‐MYC confers drug resistance remains to be fully elucidated. In this study, we found that the c‐MYC expression level in primary colorectal cancer tissues correlated with the recurrence rate following 5‐fluorouracil (5‐FU)‐based adjuvant chemotherapy. Supporting this finding, overexpression of exogenous c‐MYC increased the survival rate following 5‐FU treatment in human colon cancer cells, and knockdown of endogenous c‐MYC decreased it. Furthermore, c‐MYC knockdown decreased the expression level of ABCB5, which is involved in 5‐FU resistance. Using a chromatin immunoprecipitation assay, we found that c‐MYC bound to the ABCB5 promoter region. c‐MYC inhibitor (10058‐F4) treatment inhibited c‐MYC binding to the ABCB5 promoter, leading to a decrease in ABCB5 expression level. ABCB5 knockdown decreased the survival rate following 5‐FU treatment as expected, and the ABCB5 expression level was increased in 5‐FU‐resistant human colon cancer cells. Finally, using a human colon cancer xenograft murine model, we found that the combined 5‐FU and 10058‐F4 treatment significantly decreased tumorigenicity in nude mice compared with 5‐FU or 10058‐F4 treatment alone. 10058‐F4 treatment decreased the ABCB5 expression level in the presence or absence of 5‐FU. In contrast, 5‐FU treatment alone increased the ABCB5 expression level. Taken together, these results suggest that c‐MYC confers resistance to 5‐FU through regulating ABCB5 expression in human colon cancer cells.


Journal of Surgical Research | 2013

Significant role of bone marrow–derived cells in compensatory regenerative lung growth

Atushi Suga; Kazuhiro Ueda; Yoshihiro Takemoto; Arata Nishimoto; Tohru Hosoyama; Tao-Sheng Li; Kimikazu Hamano

BACKGROUND Extensive studies have attempted to clarify the contribution of bone marrow-derived cells to the regeneration of various organs, but not the lungs. We evaluated the role of bone marrow-derived cells in compensatory regenerative lung growth. METHODS We induced regenerative lung growth by left pneumonectomy in adult C57BL/6 mice. To evaluate the role of bone marrow-derived cells in lung regenerative growth, green fluorescent protein (GFP)-positive, bone marrow-transplanted chimeric mice underwent inhibition of stromal-cell-derived factor (SDF)-1α/CXCR4 signaling by 7-d continuous administration of a CXCR4 antagonist after pneumonectomy. RESULTS Left pneumonectomy resulted in a significant increase in lung dry weight, as well as an increase in lung volume, without enlargement of the alveolar air space. We observed GFP-positive cells 2.1-fold more frequently in the lungs of pneumonectomized mice versus sham-operated mice by immunohistochemistry (P = 0.001), although only a proportion of these accumulated cells possessed a pneumocyte-like appearance. Pneumonectomy induced a 1.4-fold increase in the SDF-1α level in the remaining lung at 7 d compared with sham-operated mice (P < 0.05), although pneumonectomy was not accompanied by histopathological lung injury. Blockade of SDF-1α/CXCR4 signaling resulted in a significant reduction in the accumulation of GFP-positive cells in the remaining lung at 7 d and prevented regenerative lung growth, as shown by a 10% reduction in lung dry weight at 14 d compared with control pneumonectomized mice (P < 0.05). CONCLUSIONS Bone marrow-derived cells have a significant role in compensatory regenerative lung growth in an adult mouse model. Further evaluation to clarify molecular interactions between bone marrow-derived cells and pneumocytes should prove fruitful.


Scientific Reports | 2016

Influence of aging on the quantity and quality of human cardiac stem cells.

Tamami Nakamura; Tohru Hosoyama; Daichi Kawamura; Yuriko Takeuchi; Yuya Tanaka; Makoto Samura; Koji Ueno; Arata Nishimoto; Hiroshi Kurazumi; Ryo Suzuki; Hiroshi Ito; Kensuke Sakata; Akihito Mikamo; Tao-Sheng Li; Kimikazu Hamano

Advanced age affects various tissue-specific stem cells and decreases their regenerative ability. We therefore examined whether aging affected the quantity and quality of cardiac stem cells using cells obtained from 26 patients of various ages (from 2 to 83 years old). We collected fresh right atria and cultured cardiosphere-derived cells (CDCs), which are a type of cardiac stem cell. Then we investigated growth rate, senescence, DNA damage, and the growth factor production of CDCs. All samples yielded a sufficient number of CDCs for experiments and the cellular growth rate was not obviously associated with age. The expression of senescence-associated b-galactosidase and the DNA damage marker, gH2AX, showed a slightly higher trend in CDCs from older patients (≥65 years). The expression of VEGF, HGF, IGF-1, SDF-1, and TGF-b varied among samples, and the expression of these beneficial factors did not decrease with age. An in vitro angiogenesis assay also showed that the angiogenic potency of CDCs was not impaired, even in those from older patients. Our data suggest that the impact of age on the quantity and quality of CDCs is quite limited. These findings have important clinical implications for autologous stem cell transplantation in elderly patients.


Biochemical and Biophysical Research Communications | 2014

Hypoxic preconditioning reinforces cellular functions of autologous peripheral blood-derived cells in rabbit hindlimb ischemia model.

Tomoaki Kudo; Tohru Hosoyama; Makoto Samura; Shunsaku Katsura; Arata Nishimoto; Naruji Kugimiya; Yasuhiko Fujii; Tao-Sheng Li; Kimikazu Hamano

Peripheral blood mononuclear cell (PBMNC) is one of powerful tools for therapeutic angiogenesis in hindlimb ischemia. However, traditional approaches with transplanted PBMNCs show poor therapeutic effects in severe ischemia patients. In this study, we used autograft models to determine whether hypoxic pretreatment effectively enhances the cellular functions of PBMNCs and improves hindlimb ischemia. Rabbit PBMNCs were cultured in the hypoxic condition. After pretreatment, cell adhesion, stress resistance, and expression of angiogenic factor were evaluated in vitro. To examine in vivo effects, we autografted preconditioned PBMNCs into a rabbit hindlimb ischemia model on postoperative day (POD) 7. Preconditioned PBMNCs displayed significantly enhanced functional capacities in resistance to oxidative stress, cell viability, and production of vascular endothelial growth factor. In addition, autologous transplantation of preconditioned PBMNCs significantly induced new vessels and improved limb blood flow. Importantly, preconditioned PBMNCs can accelerate vessel formation despite transplantation on POD 7, whereas untreated PBMNCs showed poor vascularization. Our study demonstrated that hypoxic preconditioning of PBMNCs is a feasible approach for increasing the retention of transplanted cells and enhancing therapeutic angiogenesis in ischemic tissue.


Scientific Reports | 2016

Increased plasma VEGF levels following ischemic preconditioning are associated with downregulation of miRNA-762 and miR-3072-5p

Koji Ueno; Makoto Samura; Tamami Nakamura; Yuya Tanaka; Yuriko Takeuchi; Daichi Kawamura; Masaya Takahashi; Tohru Hosoyama; Noriyasu Morikage; Kimikazu Hamano

Ischemic preconditioning (IPC) has protective effects against ischemia-perfusion injury of organs. In the present study, we investigated the associated mechanisms after performing remote IPC (rIPC) of lower limbs by clamping abdominal aorta in mice. Subsequent experiments showed decreased damage and paralysis of lower limbs following spinal cord injury (SCI). Concomitantly, plasma vascular endothelial growth factor (VEGF) levels were increased 24 h after rIPC compared with those in sham-operated animals. In subsequent microRNA analyses, thirteen microRNAs were downregulated in exosomes 24 h after rIPC. Further studies of femoral CD34-positive bone marrow (BM) cells confirmed downregulation of these seven microRNAs 24 h after rIPC compared with those in sham-operated controls. Subsequent algorithm-based database searches suggested that two of the seven microRNAs bind to the 3′ UTR of VEGF mRNA, and following transfection into CD34-positive BM cells, anti-miR-762, and anti-miR-3072-5p inhibitors led to increased VEGF concentrations. The present data suggest that rIPC transiently increases plasma VEGF levels by downregulating miR-762 and miR-3072-5p in CD34-positive BM cells, leading to protection against organ ischemia.


Journal of Translational Medicine | 2017

Therapeutic strategies for cell-based neovascularization in critical limb ischemia

Makoto Samura; Tohru Hosoyama; Yuriko Takeuchi; Koji Ueno; Noriyasu Morikage; Kimikazu Hamano

Critical limb ischemia (CLI) causes severe ischemic rest pain, ulcer, and gangrene in the lower limbs. In spite of angioplasty and surgery, CLI patients without suitable artery inflow or enough vascular bed in the lesions are often forced to undergo amputation of a major limb. Cell-based therapeutic angiogenesis has the potential to treat ischemic lesions by promoting the formation of collateral vessel networks and the vascular bed. Peripheral blood mononuclear cells and bone marrow-derived mononuclear cells are the most frequently employed cell types in CLI clinical trials. However, the clinical outcomes of cell-based therapeutic angiogenesis using these cells have not provided the promised benefits for CLI patients, reinforcing the need for novel cell-based therapeutic angiogenesis strategies to cure untreatable CLI patients. Recent studies have demonstrated the possible enhancement of therapeutic efficacy in ischemic diseases by preconditioned graft cells. Moreover, judging from past clinical trials, the identification of adequate transplant timing and responders to cell-based therapy is important for improving therapeutic outcomes in CLI patients in clinical settings. Thus, to establish cell-based therapeutic angiogenesis as one of the most promising therapeutic strategies for CLI patients, its advantages and limitations should be taken into account.


Scientific Reports | 2016

Combinatorial Treatment with Apelin-13 Enhances the Therapeutic Efficacy of a Preconditioned Cell-Based Therapy for Peripheral Ischemia

Makoto Samura; Noriyasu Morikage; Kotaro Suehiro; Yuya Tanaka; Tamami Nakamura; Arata Nishimoto; Koji Ueno; Tohru Hosoyama; Kimikazu Hamano

Hypoxic pretreatment of peripheral blood mononuclear cells (PBMNCs) enhances therapeutic angiogenesis in ischemic tissues after cell transplantation. However, newly formed vessels generated using this approach are immature and insufficient for promoting functional recovery from severe ischemia. In this study, we examined whether apelin-13, a regulator of vessel maturation, could be an effective promoter of therapeutic angiogenesis, following severe limb ischemia. Combinatorial treatment of hypoxic preconditioned PBMNCs with apelin-13 resulted in increased blood perfusion and vascular reactivity in ischemic mouse hindlimbs compared with a monotherapy comprising each factor. Apelin-13 upregulated expression of PDGF-BB and TGF-β1 in hypoxic PBMNCs, as well as that of PDGFR-β in vascular smooth muscle cells (VSMCs). Proliferation and migration of VSMCs treated with apelin-13 was accelerated in the presence of PDGF-BB. Interestingly, expression of an apelin receptor, APJ, in PBMNC was increased under hypoxia but not under normoxia. In addition, an in vitro angiogenesis assay using a co-culture model comprising mouse thoracic aorta, hypoxic PBMNCs, and apelin-13 demonstrated that combinatorial treatment recruited mural cells to sprouted vessel outgrowths from the aortic ring, thereby promoting neovessel maturation. Thus, combinatorial injection of hypoxic PBMNCs and apelin-13 could be an effective therapeutic strategy for patients with severe ischemic diseases.


Scientific Reports | 2016

Treatment of refractory cutaneous ulcers with mixed sheets consisting of peripheral blood mononuclear cells and fibroblasts.

Koji Ueno; Yuriko Takeuchi; Makoto Samura; Yuya Tanaka; Tamami Nakamura; Arata Nishimoto; Tomoaki Murata; Tohru Hosoyama; Kimikazu Hamano

The purpose of this study was to confirm the therapeutic effects of mixed sheets consisting of peripheral blood mononuclear cells (PBMNCs) and fibroblasts on cutaneous skin ulcers. Vascular endothelial growth factor (VEGF) secretion in mixed cell sheets was much higher than in PBMNCs and fibroblasts. Concerning the mechanism, transforming growth factor beta 1 and platelet-derived growth factor BB secreted from PBMNCs enhanced VEGF production in fibroblasts. In wounds created on the backs of diabetic mice, the therapeutic effect of mixed cell sheets was similar to that of daily treatment with trafermin, a recombinant human basic fibroblast growth factor. Although abnormal granulation tissue and inflammatory cell infiltration were observed in trafermin-treated wounds, the transplantation of mixed cell sheets resulted in the natural anatomy of subcutaneous tissues. The expression patterns of identical wound-healing factors in wounds were different between mixed sheet-transfected and trafermin-treated animals. Because mixed cell sheets transplanted into full-thickness skin defects were eliminated in hosts by day 21 in syngeneic transplantation models, allogeneic transplantation was performed using mice with different genetic backgrounds. The wound-healing rates were similar between the mixed cell sheet and trafermin groups. Our data indicated that mixed cell sheets represent a promising therapeutic material for cutaneous ulcers.


Cellular Physiology and Biochemistry | 2018

Treatment of Cutaneous Ulcers with Multilayered Mixed Sheets of Autologous Fibroblasts and Peripheral Blood Mononuclear Cells

Takahiro Mizoguchi; Koji Ueno; Yuriko Takeuchi; Makoto Samura; Ryo Suzuki; Tomoaki Murata; Tohru Hosoyama; Noriyasu Morikage; Kimikazu Hamano

Background/Aims: We have developed a mixed-cell sheet consisting of autologous fibroblasts and peripheral blood mononuclear cells with a high potency for angiogenesis and wound healing against refractory cutaneous ulcers in mouse and rabbit models. To increase the effectiveness of the mixed sheet, we developed a multilayered mixed sheet. Methods: We assessed the therapeutic effects of multilayered sheets on cutaneous ulcers in mice. Growth factors and chemokines were assessed by enzyme-linked immunosorbent assay. Angiogenesis and fibroblast migration were measured by using tube formation and migration assays. Wound healing rate of cutaneous ulcers was evaluated in mice with diabetes mellitus. Results: The concentration of secreted vascular endothelial growth factor, hepatocyte growth factor, transforming growth factor, C-X-C motif chemokine ligand (CXCL)-1, and CXCL-2 in multilayered sheets was much higher than that in single-layered mixed-cell sheets (single-layered sheets) and multilayered sheets of fibroblasts alone (fibroblast sheets). The supernatant in multilayered sheets enhanced angiogenic potency and fibroblast migration compared with single-layered and fibroblast sheets in an in vitro experiment. The wound healing rate in the multilayered sheet-treated group was higher compared with the no-treatment group (control) at the early stage of healing. Moreover, both vessel lumen area and microvessel density in tissues treated with multilayered sheets were significantly increased compared with tissues in the control group. Conclusion: Multilayered sheets promoted wound healing and microvascular angiogenesis in the skin by supplying growth factors and cytokines. Accordingly, our data suggest that multilayered sheets may be a promising therapeutic material for refractory cutaneous ulcers.


Oncology Letters | 2017

JAB1‑STAT3 activation loop is associated with recurrence following 5‑fluorouracil‑based adjuvant chemotherapy in human colorectal cancer

Naruji Kugimiya; Arata Nishimoto; Tohru Hosoyama; Koji Ueno; Yoshihiro Takemoto; Eijiro Harada; Tadahiko Enoki; Kimikazu Hamano

Jun activation domain-binding protein 1 (JAB1) has been shown to have multiple roles in tumorigenesis, including the degradation of tumor suppressor proteins such as p53, Smad7, Runx3 and the cyclin-dependent kinase inhibitor p27Kip1, and the activation of oncogenic transcription factors, such as c-Jun and hypoxia-inducible factor-1α. In addition, our previous study revealed that JAB1 positively regulates signal transducer and activator of transcription 3 (STAT3) DNA-binding activity in human colon cancer cells. In turn, the oncogenic transcription factor STAT3 positively regulates JAB1 expression, indicative of a positive feedback loop. Furthermore, high JAB1 expression is associated with a poor prognosis in numerous malignant carcinomas. However, the association between JAB1 expression and prognosis in colorectal cancer remains unclear. The aim of the present study was to elucidate the association between JAB1 and STAT3 expression and recurrence in colorectal cancer. In the present study, it was found that high JAB1 expression in primary colorectal cancer tissues is an independent predictor of recurrence following 5-fluorouracil (5-FU)-based adjuvant chemotherapy in colorectal cancer patients, and that high expression of both JAB1 and STAT3 in primary colorectal cancer tissues is associated with a lower recurrence-free survival rate following 5-FU-based adjuvant chemotherapy compared to high expression of only JAB1 or STAT3. Overall, these results suggest that JAB1 is a novel predictive marker of recurrence following 5-FU-based adjuvant chemotherapy in colorectal cancer patients, and that the JAB1-STAT3 activation loop may be a potential therapeutic target in recurrent colorectal cancer following 5-FU-based adjuvant chemotherapy.

Collaboration


Dive into the Tohru Hosoyama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge