Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tohru Nakashizuka is active.

Publication


Featured researches published by Tohru Nakashizuka.


Ecology Letters | 2015

A global meta‐analysis of the relative extent of intraspecific trait variation in plant communities

Andrew Siefert; Cyrille Violle; Loïc Chalmandrier; Cécile H. Albert; Adrien Taudiere; Alex Fajardo; Lonnie W. Aarssen; Christopher Baraloto; Marcos B. Carlucci; Marcus Vinicius Cianciaruso; Vinícius de L. Dantas; Francesco de Bello; Leandro da Silva Duarte; Carlos Fonseca; Grégoire T. Freschet; Stéphanie Gaucherand; Nicolas Gross; Kouki Hikosaka; Benjamin G. Jackson; Vincent Jung; Chiho Kamiyama; Masatoshi Katabuchi; Steven W. Kembel; Emilie Kichenin; Nathan J. B. Kraft; Anna Lagerström; Yoann Le Bagousse-Pinguet; Yuanzhi Li; Norman W. H. Mason; Julie Messier

Recent studies have shown that accounting for intraspecific trait variation (ITV) may better address major questions in community ecology. However, a general picture of the relative extent of ITV compared to interspecific trait variation in plant communities is still missing. Here, we conducted a meta-analysis of the relative extent of ITV within and among plant communities worldwide, using a data set encompassing 629 communities (plots) and 36 functional traits. Overall, ITV accounted for 25% of the total trait variation within communities and 32% of the total trait variation among communities on average. The relative extent of ITV tended to be greater for whole-plant (e.g. plant height) vs. organ-level traits and for leaf chemical (e.g. leaf N and P concentration) vs. leaf morphological (e.g. leaf area and thickness) traits. The relative amount of ITV decreased with increasing species richness and spatial extent, but did not vary with plant growth form or climate. These results highlight global patterns in the relative importance of ITV in plant communities, providing practical guidelines for when researchers should include ITV in trait-based community and ecosystem studies.


Ecology | 2008

LEAF HERBIVORY AND DECOMPOSABILITY IN A MALAYSIAN TROPICAL RAIN FOREST

Hiroko Kurokawa; Tohru Nakashizuka

There is accumulating evidence that similar suites of plant traits may affect leaf palatability and leaf litter decomposability. However, the possible association between leaf herbivory and litter decomposition rates across species in species-diverse natural ecosystems such as tropical rain forests remains unexplored, despite its importance in estimating the herbivory effects on carbon and nutrient cycling of ecosystems. We found no strong association between leaf herbivory and litter decomposition rates across 40 tree species in a Malaysian tropical rain forest, even though the leaf and litter traits were tightly correlated. This is because the leaf and litter traits related to herbivory and decomposition rates in the field were inconsistent. Leaf toughness accounted for only a small part of the variation in the herbivory rate, whereas a number of litter traits (the leaf mass per area, lignin to nitrogen ratio, and condensed tannin concentration) accurately predicted the decomposition rate across species. These results suggest that herbivory rate across species may not be strongly related to single leaf traits, probably because plant-herbivore interactions in tropical rain forests are highly diverse; on the other hand, plant-decomposer interactions are less specific and can be governed by litter chemicals. We also investigated two factors, phylogeny and tree functional types, that could affect the relationship between herbivory and decomposition across species. Phylogenetic relatedness among the species did not affect the relationship between herbivory and decomposition. In contrast, when the plants were segregated according to their leaf emergence pattern, we found a significant positive relationship between herbivory and decomposition rates for continuous-leafing species. In these species, the condensed tannin to N ratios in leaves and litter were related to herbivory and decomposition rates, respectively. However, we did not observe a similar trend for synchronous-leafing species. These results suggest that the relationship between herbivory and decomposition may be more greatly affected by functional types than by phylogenetic relatedness among species. In conclusion, our results suggest that well-defended leaves are not necessarily less decomposable litter in a tropical rain forest community, implying that herbivory may not generate positive feedback for carbon and nutrient cycling in this type of ecosystem.


Canadian Journal of Zoology | 2007

Effect of forest use on trophic levels of small mammals: an analysis using stable isotopes

Michiko Nakagawa; Fujio Hyodo; Tohru Nakashizuka

The degradation of tropical forests is progressing rapidly and its ecological effects on wild animals are a global concern. We evaluated the hypothesis that small mammals in highly degraded forest occupy higher trophic levels than those in somewhat degraded forests, as indicated by diets high in consumers such as insects, in a tropical rain forest in Sarawak, Malaysia. After correcting for differences in the δ15N values for primary production among the study sites, the δ15Ncorrected values for rats and mice (Muridae) differed significantly among forest types. Rats and mice in more degraded forest had higher δ15Ncorrected values than those in less degraded or primary forest; in contrast, treeshrews (Tupaiidae) and squirrels (Sciuridae) showed no significant differences in the δ15Ncorrected values among forest types. We found significant positive correlations between canopy openness and the δ15Ncorrected values for one species of squirrel and two species of rats. This hypothesis was supported for small mamm...


Journal of Applied Ecology | 2013

Sustaining ecosystem functions in a changing world: a call for an integrated approach

Hiroshi Tomimatsu; Takehiro Sasaki; Hiroko Kurokawa; Jon R. Bridle; Colin Fontaine; Jun Kitano; Daniel B. Stouffer; Mark Vellend; T. Martijn Bezemer; Tadashi Fukami; Elizabeth A. Hadly; Marcel G. A. van der Heijden; Masakado Kawata; Sonia Kéfi; Nathan J. B. Kraft; Kevin S. McCann; Peter J. Mumby; Tohru Nakashizuka; Owen L. Petchey; Tamara N. Romanuk; Katharine N. Suding; Gaku Takimoto; Jotaro Urabe; Shigeo Yachi

With ever-increasing human pressure on ecosystems, it is critically important to predict how ecosystem functions will respond to such human-induced perturbations. We define perturbations as either changes to abiotic environment (e.g. eutrophication, climate change) that indirectly affects biota, or direct changes to biota (e.g. species introductions). While two lines of research in ecology, biodiversity-ecosystem function (BDEF) and ecological resilience (ER) research, have addressed this issue, both fields of research have nontrivial shortcomings in their abilities to address a wide range of realistic scenarios. We outline how an integrated research framework may foster a deeper understanding of the functional consequences of perturbations via simultaneous application of (i) process-based mechanistic predictions using trait-based approaches and (ii) detection of empirical patterns of functional changes along real perturbation gradients. In this context, the complexities of ecological interactions and evolutionary perspectives should be integrated into future research. Synthesis and applications. Management of human-impacted ecosystems can be guided most directly by understanding the response of ecosystem functions to controllable perturbations. In particular, we need to characterize the form of a wide range of perturbation-function relationships and to draw connections between those patterns and the underlying ecological processes. We anticipate that the integrated perspectives will also be helpful for managers to derive practical implications for management from academic literature. Management of human-impacted ecosystems can be guided most directly by understanding the response of ecosystem functions to controllable perturbations. In particular, we need to characterize the form of a wide range of perturbation-function relationships and to draw connections between those patterns and the underlying ecological processes. We anticipate that the integrated perspectives will also be helpful for managers to derive practical implications for management from academic literature.


Journal of Vegetation Science | 2008

Comparative demography of three coexisting Acer species in gaps and under closed canopy

Hiroshi Tanaka; Mitsue Shibata; Takashi Masaki; Shigeo Iida; Kaoru Niiyama; Shin Abe; Yohsuke Kominami; Tohru Nakashizuka

Abstract Questions: 1. Is there a trade-off between gap dependency and shade tolerance in each of the life-history stages of three closely related, coexisting species, Acer amoenum (Aa), A. mono (Am) and A. rufinerve (Ar)? 2. If not, what differences in life-history traits contribute to the coexistence of these non-pioneer species? Location: Ogawa Forest Reserve, a remnant (98 ha), species-rich, temperate deciduous forest in central Japan (36°56′ N, 140°35′ E, 600 - 660 m a.s.l.). Methods: We estimated the demographic parameters (survival, growth rate and fecundity) by stage of each species growing in gaps and under closed canopy through observations of a 6-ha permanent plot over 12 years. Population dynamics were analysed with stage-based matrix models including gap dynamics. Results: All of the species showed high seedling and sapling survival rates under closed canopies. However, demographic parameters for each growth stage in gaps and under closed canopies revealed inter-specific differences and ontogenetic shifts. The trade-off between survival in the shade and growth in gaps was detected only at the small sapling stage (height < 30 cm), and Ar had the highest growth rate both in the shade and in the gaps at most life stages. Conclusions: Inter-specific differences and ontogenetic shifts in light requirements with life-form differences may contribute to the coexistence of the Acer species in old-growth forests, with Aa considered a long-lived sub-canopy tree, Am a long-lived canopy tree, and Ar a short-lived, ‘gap-phase’ sub-canopy tree. Nomenclature: Satake et al. (1989).


Journal of Ecology | 2014

Interspecific variation in the size-dependent resprouting ability of temperate woody species and its adaptive significance

Rei Shibata; Mitsue Shibata; Hiroshi Tanaka; Shigeo Iida; Takashi Masaki; Fumika Hatta; Hiroko Kurokawa; Tohru Nakashizuka

Summary n nResprouting of woody species after above-ground damage may help plants to persist longer at a given site and quickly reoccupy disturbed sites, thereby strongly influencing forest dynamics. Resprouting has been discussed from two adaptation perspectives: recovery from damage by catastrophic disturbance and survival in frequently disturbed shaded understorey. However, few studies have comprehensively dealt with both adaptation types to understand resprouting strategies. nTo understand the adaptive significance of resprouting, we assessed the size dependence of resprouting ability after stem clipping for 24 deciduous broad-leaved species, including shrubs, sub-canopy and canopy trees, in a cool-temperate forest in Japan. The community assembly includes species adapted to past catastrophic disturbances (e.g. fire, logging) and to stable forest with intermittent treefall (currently the dominant disturbance). We correlated resprouting ability with life-history strategies based on demographic parameters and plant functional traits, such as leaf mass per area (LMA), leaf toughness and wood density. nAll the studied species could resprout in juveniles, and resprouting ability increased as stump size increased. Most sub-canopy and canopy trees lost their ability to resprout after attaining a particular stump size, whereas shrub species retained the ability to resprout throughout their lifetimes. nThe relative growth rate, LMA and foliar nitrogen did not greatly influence the resprouting ability of a species. In contrast, species with smaller maximum size, lower leaf toughness and lower wood density had better juvenile resprouting ability. This better resprouting ability may have evolved because these characteristics make them more vulnerable to shaded understorey. However, species with larger maximum size and lower leaf toughness retained their ability to resprout to a larger size. nSynthesis. A better resprouting ability is related to the ability to survive frequent disturbances, in juveniles, which are characteristics of both forest understorey and frequent fire or drought. To retain resprouting ability until grown seems to be an adaptation to survive infrequent large disturbances. Light-demanding species, which generally have better resprouting ability than shade-tolerants both in juveniles and adults, are adapted to disturbances of various scale and frequency; however, shade-tolerants could survive well in the understorey due to a combination of stronger physical defences and resprouting ability.


Ecoscience | 2010

Effects of abiotic and biotic factors and stochasticity on tree regeneration in a temperate forest community.

Mitsue Shibata; Takashi Masaki; Hiroshi Tanaka; Kaoru Niiyama; Shigeo Iida; Shin Abe; Tohru Nakashizuka

Abstract: How deterministic or stochastic is tree regeneration in a temperate forest? To answer this question, we analyzed the relative effects of abiotic and biotic factors on seed and seedling demography of tree species in an old-growth temperate forest, Ogawa Forest Reserve, Japan. The working hypothesis was that seed and seedling demography of trees would be controlled more deterministically in comparison with tropical forests and that the magnitude of deterministic effects of the abiotic and biotic factors would depend on regeneration traits relating to seed dispersal ability. We examined 5 abiotic factors (litter and humus cover, vegetation cover, light level, soil moisture, and relative elevation) and 2 species-specific biotic factors (distance from the nearest conspecific adult and density of conspecific seeds or seedlings) to quantify their contribution to the spatial variation in seedling emergence and survival for 18 principal tree species in the community. The results showed that conspecific seed density had a negative effect on seedling emergence for almost all species, as suggested by the Janzen—Connell model. On the other hand, various factors were detected for seedling survival of each species. We also found that regeneration traits relating to seed dispersal ability were significantly correlated with some of the abiotic factors. However, the 7 factors tested were less important than expected; seed and seedling demography appeared to be determined rather stochastically in this stable forest community. Even in a temperate forest, seed and seedling demography appeared to be rather stochastic, and niche partitioning among species during these stages was of limited importance.


Journal of Applied Ecology | 2014

Vulnerability of moorland plant communities to environmental change: consequences of realistic species loss on functional diversity

Takehiro Sasaki; Masatoshi Katabuchi; Chiho Kamiyama; Masaya Shimazaki; Tohru Nakashizuka; Kouki Hikosaka

Understanding the consequences of realistic species loss on the functioning and persistence of vulnerable ecosystems is key to devising conservation strategies when environmental changes are immediate threats. Yet, few studies have provided direct evidence for conservation prioritization and decision-making. We incorporated the quantification of functional diversity based on the Rao index of diversity (FDrao) into this applied context and examined the consequences of realistic species loss on functional diversity in moorland plant communities widely interspersed within a subalpine zone in northern Japan. The realistic order of species loss was derived from the nested subset pattern in the moorland communities, which was corroborated by selective species tolerance and selective extinction. We analysed the relationships between the FDrao half-life, as an index of each moorlands vulnerability to species loss, and a range of environmental variables describing the moorlands. We then mapped this index across the entire landscape. At most sites, ordered species loss caused a relatively small decline in FDrao until a certain number of species was lost and an accelerating decline thereafter, suggesting relatively low initial vulnerability to species loss. At the other sites, however, ordered species loss caused an approximately proportional decrease in FDrao, suggesting relatively high vulnerability to species loss. The model indicated that sites with higher elevation, higher carrying capacities, or increasing isolation have a shorter FDrao half-life. The mapping of this index allowed us to identify the geographical distribution of sites of high conservation priority.Synthesis and applications. We performed fine-scale assessments of the vulnerability of moorland plant communities to species loss, which is likely to occur under future environmental conditions, by simulating the consequences of realistic species loss for functional diversity. The methods used here can provide urgently needed information to support the prioritization and decision-making involved in conserving ecosystems in the face of global biodiversity loss. nWe performed fine-scale assessments of the vulnerability of moorland plant communities to species loss, which is likely to occur under future environmental conditions, by simulating the consequences of realistic species loss for functional diversity. The methods used here can provide urgently needed information to support the prioritization and decision-making involved in conserving ecosystems in the face of global biodiversity loss.


Bulletin of Entomological Research | 2009

Population fluctuations of light-attracted chrysomelid beetles in relation to supra-annual environmental changes in a Bornean rainforest.

Keiko Kishimoto-Yamada; Takao Itioka; Shoko Sakai; Kuniyasu Momose; Teruyoshi Nagamitsu; Het Kaliang; Paulus Meleng; Lucy Chong; A.A. Hamid Karim; Seiki Yamane; Makoto Kato; C.A.M. Reid; Tohru Nakashizuka; Tamiji Inoue

In Southeast Asian tropical rainforests, two events, severe droughts associated with the El Niño-Southern Oscillation and general flowering, a type of community-wide mass flowering, occur at irregular, supra-annual intervals. The relationship between these two supra-annual events and patterns of insect population fluctuations has yet to be clearly elucidated. Leaf beetles (Chrysomelidae) are major herbivores and flower-visitors of canopy trees, affecting their growth and reproduction and, in turn, affected by tree phenology; but their population fluctuations in the Southeast Asian tropics have not been extensively investigated. We examined population fluctuation patterns of the 34 most dominant chrysomelid species in relation to the two supra-annual events by conducting monthly light-trapping over seven years in a lowland dipterocarp forest in Borneo. Our results showed large community variation in population fluctuation patterns and a supra-annual (between-year) variation in abundance for most of the dominant chrysomelids that was significantly larger than the annual (within-year) variation. Specifically, in response to a severe drought in 1998, chrysomelid species exhibited different population responses. These results show that population fluctuations of individual species, rather than the entire assemblage, must be analyzed to determine the effects of changes in environmental conditions on the structure of insect assemblages in the tropics, especially in regions where supra-annual environmental changes are relatively more important than seasonal changes.


Photosynthetica | 2008

Photosynthetic water use efficiency in tree crowns of Shorea beccariana and Dryobalanops aromatica in a tropical rain forest in Sarawak, East Malaysia

Yoshinori Kitahashi; Tomoaki Ichie; Yutaka Maruyama; Tanaka Kenzo; Satoshi Kitaoka; S. Matsuki; L. Chong; Tohru Nakashizuka; Takayoshi Koike

Photosynthetic water use efficiency (PWUE), stomatal conductance (g s), and water potential were measured at two different positions in the tree crown of two emergent tropical tree species (Shorea beccariana Burck, Dryobalanops aromatica Gaertn. f.). The trees were about 50 m high, in a tropical rain forest in Sarawak, East Malaysia. In both species, g s at the upper crown position at midday was lower than at the lower crown position, even though both positions were exposed to full sunlight; the difference was greater in S. beccariana. Hydraulic limitation occurs in the upper crown position in both species. A midday depression was observed in the photon saturated photosynthetic rate in both species, especially at the upper crown. However, PWUE was markedly higher in the upper crown than the lower crown at midday, even though no morphological adjustment was observed in the leaves; this difference was greater in S. beccariana.

Collaboration


Dive into the Tohru Nakashizuka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chiho Kamiyama

United Nations University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge