Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tohru Ohta is active.

Publication


Featured researches published by Tohru Ohta.


Nature Genetics | 2010

Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome

Sarah B. Ng; Abigail W. Bigham; Kati J. Buckingham; Mark C. Hannibal; Margaret J. McMillin; Heidi I. Gildersleeve; Anita E. Beck; Holly K. Tabor; Gregory M. Cooper; Mefford Hc; Choli Lee; Emily H. Turner; Joshua D. Smith; Mark J. Rieder; Koh-ichiro Yoshiura; Naomichi Matsumoto; Tohru Ohta; Norio Niikawa; Deborah A. Nickerson; Michael J. Bamshad; Jay Shendure

We demonstrate the successful application of exome sequencing to discover a gene for an autosomal dominant disorder, Kabuki syndrome (OMIM%147920). We subjected the exomes of ten unrelated probands to massively parallel sequencing. After filtering against existing SNP databases, there was no compelling candidate gene containing previously unknown variants in all affected individuals. Less stringent filtering criteria allowed for the presence of modest genetic heterogeneity or missing data but also identified multiple candidate genes. However, genotypic and phenotypic stratification highlighted MLL2, which encodes a Trithorax-group histone methyltransferase: seven probands had newly identified nonsense or frameshift mutations in this gene. Follow-up Sanger sequencing detected MLL2 mutations in two of the three remaining individuals with Kabuki syndrome (cases) and in 26 of 43 additional cases. In families where parental DNA was available, the mutation was confirmed to be de novo (n = 12) or transmitted (n = 2) in concordance with phenotype. Our results strongly suggest that mutations in MLL2 are a major cause of Kabuki syndrome.


Nature Genetics | 2004

Heterozygous TGFBR2 mutations in Marfan syndrome

Takeshi Mizuguchi; Gwenaëlle Collod-Béroud; Takushi Akiyama; Marianne Abifadel; Naoki Harada; Takayuki Morisaki; Delphine Allard; Mathilde Varret; Mireille Claustres; Hiroko Morisaki; Makoto Ihara; Akira Kinoshita; Koh-ichiro Yoshiura; Claudine Junien; Tadashi Kajii; Guillaume Jondeau; Tohru Ohta; Tatsuya Kishino; Yoichi Furukawa; Yusuke Nakamura; Norio Niikawa; Catherine Boileau; Naomichi Matsumoto

Marfan syndrome is an extracellular matrix disorder with cardinal manifestations in the eye, skeleton and cardiovascular systems associated with defects in the gene encoding fibrillin (FBN1) at 15q21.1 (ref. 1). A second type of the disorder (Marfan syndrome type 2; OMIM 154705) is associated with a second locus, MFS2, at 3p25–p24.2 in a large French family (family MS1). Identification of a 3p24.1 chromosomal breakpoint disrupting the gene encoding TGF-β receptor 2 (TGFBR2) in a Japanese individual with Marfan syndrome led us to consider TGFBR2 as the gene underlying association with Marfan syndrome at the MSF2 locus. The mutation 1524G→A in TGFBR2 (causing the synonymous amino acid substitution Q508Q) resulted in abnormal splicing and segregated with MFS2 in family MS1. We identified three other missense mutations in four unrelated probands, which led to loss of function of TGF-β signaling activity on extracellular matrix formation. These results show that heterozygous mutations in TGFBR2, a putative tumor-suppressor gene implicated in several malignancies, are also associated with inherited connective-tissue disorders.


Nature Genetics | 2012

Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome.

Yoshinori Tsurusaki; Nobuhiko Okamoto; Hirofumi Ohashi; Tomoki Kosho; Yoko Imai; Yumiko Hibi-Ko; Tadashi Kaname; Kenji Naritomi; Hiroshi Kawame; Keiko Wakui; Yoshimitsu Fukushima; Tomomi Homma; Mitsuhiro Kato; Yoko Hiraki; Takanori Yamagata; Shoji Yano; Seiji Mizuno; Satoru Sakazume; Takuma Ishii; Toshiro Nagai; Masaaki Shiina; Kazuhiro Ogata; Tohru Ohta; Norio Niikawa; Satoko Miyatake; Ippei Okada; Takeshi Mizuguchi; Hiroshi Doi; Hirotomo Saitsu; Noriko Miyake

By exome sequencing, we found de novo SMARCB1 mutations in two of five individuals with typical Coffin-Siris syndrome (CSS), a rare autosomal dominant anomaly syndrome. As SMARCB1 encodes a subunit of the SWItch/Sucrose NonFermenting (SWI/SNF) complex, we screened 15 other genes encoding subunits of this complex in 23 individuals with CSS. Twenty affected individuals (87%) each had a germline mutation in one of six SWI/SNF subunit genes, including SMARCB1, SMARCA4, SMARCA2, SMARCE1, ARID1A and ARID1B.


Nature Genetics | 2006

A SNP in the ABCC11 gene is the determinant of human earwax type

Koh-ichiro Yoshiura; Akira Kinoshita; Takafumi Ishida; Aya Ninokata; Toshihisa Ishikawa; Tadashi Kaname; Makoto Bannai; Katsushi Tokunaga; Shunro Sonoda; Ryoichi Komaki; Makoto Ihara; Vladimir Saenko; Gabit Alipov; Ichiro Sekine; Kazuki Komatsu; Haruo Takahashi; Mitsuko Nakashima; Nadiya Sosonkina; Christophe K. Mapendano; Mohsen Ghadami; Masayo Nomura; Desheng Liang; Nobutomo Miwa; Dae-Kwang Kim; Ariuntuul Garidkhuu; Nagato Natsume; Tohru Ohta; Hiroaki Tomita; Akira Kaneko; Mihoko Kikuchi

Human earwax consists of wet and dry types. Dry earwax is frequent in East Asians, whereas wet earwax is common in other populations. Here we show that a SNP, 538G → A (rs17822931), in the ABCC11 gene is responsible for determination of earwax type. The AA genotype corresponds to dry earwax, and GA and GG to wet type. A 27-bp deletion in ABCC11 exon 29 was also found in a few individuals of Asian ancestry. A functional assay demonstrated that cells with allele A show a lower excretory activity for cGMP than those with allele G. The allele A frequency shows a north-south and east-west downward geographical gradient; worldwide, it is highest in Chinese and Koreans, and a common dry-type haplotype is retained among various ethnic populations. These suggest that the allele A arose in northeast Asia and thereafter spread through the world. The 538G → A SNP is the first example of DNA polymorphism determining a visible genetic trait.


American Journal of Medical Genetics Part A | 2011

Spectrum of MLL2 (ALR) mutations in 110 cases of Kabuki syndrome.

Mark C. Hannibal; Kati J. Buckingham; Sarah B. Ng; Jeffrey E. Ming; Anita E. Beck; Margaret J. McMillin; Heidi I. Gildersleeve; Abigail W. Bigham; Holly K. Tabor; Mefford Hc; Joseph Cook; Koh-ichiro Yoshiura; Tadashi Matsumoto; Naomichi Matsumoto; Noriko Miyake; Hidefumi Tonoki; Kenji Naritomi; Tadashi Kaname; Toshiro Nagai; Hirofumi Ohashi; Kenji Kurosawa; Jia Woei Hou; Tohru Ohta; Deshung Liang; Akira Sudo; Colleen A. Morris; Siddharth Banka; Graeme C.M. Black; Jill Clayton-Smith; Deborah A. Nickerson

Kabuki syndrome is a rare, multiple malformation disorder characterized by a distinctive facial appearance, cardiac anomalies, skeletal abnormalities, and mild to moderate intellectual disability. Simplex cases make up the vast majority of the reported cases with Kabuki syndrome, but parent‐to‐child transmission in more than a half‐dozen instances indicates that it is an autosomal dominant disorder. We recently reported that Kabuki syndrome is caused by mutations in MLL2, a gene that encodes a Trithorax‐group histone methyltransferase, a protein important in the epigenetic control of active chromatin states. Here, we report on the screening of 110 families with Kabuki syndrome. MLL2 mutations were found in 81/110 (74%) of families. In simplex cases for which DNA was available from both parents, 25 mutations were confirmed to be de novo, while a transmitted MLL2 mutation was found in two of three familial cases. The majority of variants found to cause Kabuki syndrome were novel nonsense or frameshift mutations that are predicted to result in haploinsufficiency. The clinical characteristics of MLL2 mutation‐positive cases did not differ significantly from MLL2 mutation‐negative cases with the exception that renal anomalies were more common in MLL2 mutation‐positive cases. These results are important for understanding the phenotypic consequences of MLL2 mutations for individuals and their families as well as for providing a basis for the identification of additional genes for Kabuki syndrome.


Genomics | 2003

Complex low-copy repeats associated with a common polymorphic inversion at human chromosome 8p23

Hirobumi Sugawara; Naoki Harada; Tomoko Ida; Takafumi Ishida; David H. Ledbetter; Ko-ichiro Yoshiura; Tohru Ohta; Tatsuya Kishino; Norio Niikawa; Naomichi Matsumoto

To characterize a submicroscopic, common 8p23 polymorphic inversion, we constructed a complete BAC/PAC-based physical map covering the entire 4.7-Mb inversion and its flanking regions. Two low-copy repeats (LCRs), REPD (approximately 1.3 Mb) and REPP (approximately 0.4 Mb), were identified at each of the inversion breakpoints. Comparison of the REPD and REPP sequences revealed that REPD showed high homology to REPP, with complex direct and inverted orientations. REPD and REPP contain six and five olfactory receptor gene-related sequences, respectively. LCRs at 8p23 showed multiple FISH signals from an Old World monkey to the human. Thus, multiplication of the LCR may have occurred at least 21-25 million years ago. We also investigated the frequency of the 4.7-Mb inversion in the general Japanese population and found that the allele frequency for the 8p23 inversion was estimated to be 27%.


American Journal of Medical Genetics Part A | 2013

MLL2 and KDM6A mutations in patients with Kabuki syndrome

Noriko Miyake; Eriko Koshimizu; Nobuhiko Okamoto; Seiji Mizuno; Tsutomu Ogata; Toshiro Nagai; Tomoki Kosho; Hirofumi Ohashi; Mitsuhiro Kato; Goro Sasaki; Hiroyo Mabe; Yoriko Watanabe; Makoto Yoshino; Toyojiro Matsuishi; Jun-ichi Takanashi; Vorasuk Shotelersuk; Mustafa Tekin; Nobuhiko Ochi; Masaya Kubota; Naoko Ito; Kenji Ihara; Toshiro Hara; Hidefumi Tonoki; Tohru Ohta; Kayoko Saito; Mari Matsuo; Mari Urano; Takashi Enokizono; Astushi Sato; Hiroyuki Tanaka

Kabuki syndrome is a congenital anomaly syndrome characterized by developmental delay, intellectual disability, specific facial features including long palpebral fissures and ectropion of the lateral third of the lower eyelids, prominent digit pads, and skeletal and visceral abnormalities. Mutations in MLL2 and KDM6A cause Kabuki syndrome. We screened 81 individuals with Kabuki syndrome for mutations in these genes by conventional methods (nu2009=u200958) and/or targeted resequencing (nu2009=u200945) or whole exome sequencing (nu2009=u20095). We identified a mutation in MLL2 or KDM6A in 50 (61.7%) and 5 (6.2%) cases, respectively. Thirty‐five MLL2 mutations and two KDM6A mutations were novel. Non‐protein truncating‐type MLL2 mutations were mainly located around functional domains, while truncating‐type mutations were scattered through the entire coding region. The facial features of patients in the MLL2 truncating‐type mutation group were typical based on those of the 10 originally reported patients with Kabuki syndrome; those of the other groups were less typical. High arched eyebrows, short fifth finger, and hypotonia in infancy were more frequent in the MLL2 mutation group than in the KDM6A mutation group. Short stature and postnatal growth retardation were observed in all individuals with KDM6A mutations, but in only half of the group with MLL2 mutations.


American Journal of Medical Genetics Part A | 2006

BAC array CGH reveals genomic aberrations in idiopathic mental retardation

Noriko Miyake; Osamu Shimokawa; Naoki Harada; Nadia Sosonkina; Aiko Okubo; Hiroki Kawara; Nobuhiko Okamoto; Kenji Kurosawa; Hiroshi Kawame; Mie Iwakoshi; Tomoki Kosho; Yoshimitsu Fukushima; Yoshio Makita; Yuji Yokoyama; Takanori Yamagata; Mitsuhiro Kato; Yoko Hiraki; Masayo Nomura; Ko-ichiro Yoshiura; Tatsuya Kishino; Tohru Ohta; Takeshi Mizuguchi; Norio Niikawa; Naomichi Matsumoto

Array using 2,173 BAC clones covering the whole human genome has been constructed. All clones spotted were confirmed to show a unique signal at the predicted chromosomal location by FISH analysis in our laboratory. A total of 30 individuals with idiopathic mental retardation (MR) were analyzed by comparative genomic hybridization using this array. Three deletions, one duplication, and one unbalanced translocation could be detected in five patients, which are likely to contribute to MR. The constructed array was shown to be an efficient tool for the detection of pathogenic genomic rearrangements in MR patients as well as copy number polymorphisms (CPNs).


American Journal of Medical Genetics Part A | 2005

Molecular characterization of del(8)(p23.1p23.1) in a case of congenital diaphragmatic hernia

Osamu Shimokawa; Noriko Miyake; Takazumi Yoshimura; Nadiya Sosonkina; Naoki Harada; Takeshi Mizuguchi; Shinji Kondoh; Tatsuya Kishino; Tohru Ohta; Visser Remco; Takeshi Takashima; Akira Kinoshita; Ko-ichiro Yoshiura; Norio Niikawa; Naomichi Matsumoto

A 36‐week‐old fetus was referred to the medical center because of his cystic mass and fluid in left thoracic cavity, and was delivered by cesarean section to manage neonatal problems at 37 weeks of gestation. Emergent surgical repair of the left diaphragmatic hernia was performed, but severe hypoxia persisted, and he expired on the following day. Chromosome analysis of cultured amniotic fluid cells indicated 46,XY,del(8)(p23.1p23.1). This is the fourth case of 8p23.1 deletion associated with diaphragmatic hernia. Microarray comparative genomic hybridization analysis using DNA of cultured amniotic fluid cells showed that six clones were deleted, which were mapped to the region between two low copy repeats (LCRs) at 8p23.1 previously described. Microsatellite analysis revealed that the deletion was of paternal origin, and his parents did not carry 8p23.1 polymorphic inversion. These data strongly suggested that the 8p23.1 interstitial deletion should have arisen through a different mechanism from that of inv dup del(8p) whose structural abnormality is always of maternal origin and accompanies heterozygous 8p23.1 polymorphic inversion in mother.


American Journal of Medical Genetics Part A | 2013

Clinical correlations of mutations affecting six components of the SWI/SNF complex: Detailed description of 21 patients and a review of the literature

Tomoki Kosho; Nobuhiko Okamoto; Hirofumi Ohashi; Yoshinori Tsurusaki; Yoko Imai; Yumiko Hibi-Ko; Hiroshi Kawame; Tomomi Homma; Saori Tanabe; Mitsuhiro Kato; Yoko Hiraki; Takanori Yamagata; Shoji Yano; Satoru Sakazume; Takuma Ishii; Toshiro Nagai; Tohru Ohta; Norio Niikawa; Seiji Mizuno; Tadashi Kaname; Kenji Naritomi; Yoko Narumi; Keiko Wakui; Yoshimitsu Fukushima; Satoko Miyatake; Takeshi Mizuguchi; Hirotomo Saitsu; Noriko Miyake; Naomichi Matsumoto

Mutations in the components of the SWItch/sucrose nonfermentable (SWI/SNF)‐like chromatin remodeling complex have recently been reported to cause Coffin–Siris syndrome (CSS), Nicolaides–Baraitser syndrome (NCBRS), and ARID1B‐related intellectual disability (ID) syndrome. We detail here the genotype‐phenotype correlations for 85 previously published and one additional patient with mutations in the SWI/SNF complex: four with SMARCB1 mutations, seven with SMARCA4 mutations, 37 with SMARCA2 mutations, one with an SMARCE1 mutation, three with ARID1A mutations, and 33 with ARID1B mutations. The mutations were associated with syndromic ID and speech impairment (severe/profound in SMARCB1, SMARCE1, and ARID1A mutations; variable in SMARCA4, SMARCA2, and ARID1B mutations), which was frequently accompanied by agenesis or hypoplasia of the corpus callosum. SMARCB1 mutations caused “classical” CSS with typical facial “coarseness” and significant digital/nail hypoplasia. SMARCA4 mutations caused CSS without typical facial coarseness and with significant digital/nail hypoplasia. SMARCA2 mutations caused NCBRS, typically with short stature, sparse hair, a thin vermillion of the upper lip, an everted lower lip and prominent finger joints. A SMARCE1 mutation caused CSS without typical facial coarseness and with significant digital/nail hypoplasia. ARID1A mutations caused the most severe CSS with severe physical complications. ARID1B mutations caused CSS without typical facial coarseness and with mild digital/nail hypoplasia, or caused syndromic ID. Because of the common underlying mechanism and overlapping clinical features, we propose that these conditions be referred to collectively as “SWI/SNF‐related ID syndromes”.

Collaboration


Dive into the Tohru Ohta's collaboration.

Top Co-Authors

Avatar

Norio Niikawa

Health Sciences University of Hokkaido

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nobuhiko Okamoto

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge