Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Toki Taira is active.

Publication


Featured researches published by Toki Taira.


Bioscience, Biotechnology, and Biochemistry | 2005

Purification, Characterization, and Antifungal Activity of Chitinases from Pineapple (Ananas comosus) Leaf

Toki Taira; Noriko Toma; Masanobu Ishihara

Three chitinases, designated pineapple leaf chitinase (PL Chi)-A, -B, and -C were purified from the leaves of pineapple (Ananas comosus) using chitin affinity column chromatography followed by several column chromatographies. PL Chi-A is a class III chitinase having a molecular mass of 25 kDa and an isoelectric point of 4.4. PL Chi-B and -C are class I chitinases having molecular masses of 33 kDa and 39 kDa and isoelectric points of 7.9 and 4.6 respectively. PL Chi-C is a glycoprotein and the others are simple proteins. The optimum pHs of PL Chi-A, -B, and -C toward glycolchitin are pH 3, 4, and 9 respectively. The chitin-binding ability of PL Chi-C is higher than that of PL Chi-B, and PL Chi-A has lower chitin-binding ability than the others. At low ionic strength, PL Chi-B exhibits strong antifungal activity toward Trichoderma viride but the others do not. At high ionic strength, PL Chi-B and -C exhibit strong and weak antifungal activity respectively. PL Chi-A does not have antifungal activity.


Bioscience, Biotechnology, and Biochemistry | 2002

Antifungal Activity of Rye (Secale cereale) Seed Chitinases: the Different Binding Manner of Class I and Class II Chitinases to the Fungal Cell Walls

Toki Taira; Takayuki Ohnuma; Takeshi Yamagami; Yoichi Aso; Masatsune Ishiguro; Masanobu Ishihara

The antifungal activities of rye seed chitinase-a (RSC-a, class I) and -c (RSC-c, class II) were studied in detail using two different bioassays with Trichoderma sp. as well as binding and degradation experiments with the cell walls prepared from its mycelia. RSC-a inhibited more strongly the re-extension of the hyphae, containing mainly mature cells, than RSC-c did. Upon incubation of the fungus with fluorescent chitinases, FITC- labeled RSC-a was found to be located in the hyphal tips, lateral walls, and septa, while FITC-labeled RSC-c was only in the hyphal tip. RSC-a had a greater affinity for the cell walls than RSC-c. RSC-a liberated a larger amount of reducing sugar from the cell walls than RSC-c did. These results inferred that RSC-a first binds to the lateral walls and septa, consisting of the mature cell walls, and degrades mature chitin fiber, while RSC-c binds only to the hyphal tip followed by degradation of only nascent chitin. As a result, RSC-a inhibited fungal growth more effectively than RSC-c. Furthermore, it was suggested that the chitin-binding domain in RSC-a assists the antifungal action of RSC-a by binding to the fungal hypha.


Bioscience, Biotechnology, and Biochemistry | 2005

Characterization and Antifungal Activity of Gazyumaru (Ficus microcarpa) Latex Chitinases: Both the Chitin-Binding and the Antifungal Activities of Class I Chitinase Are Reinforced with Increasing Ionic Strength

Toki Taira; Atsuko Ohdomari; Naoya Nakama; Makiko Shimoji; Masanobu Ishihara

Three chitinases, designated gazyumaru latex chitinase (GLx Chi)-A, -B, and -C, were purified from the latex of gazyumaru (Ficus microcarpa). GLx Chi-A,-B, and -C are an acidic class III (33 kDa, pI 4.0), a basic class I (32 kDa, pI 9.3), and a basic class II chitinase (27 kDa, pI>10) respectively. GLx Chi-A did not exhibit any antifungal activity. At low ionic strength, GLx Chi-C exhibited strong antifungal activity, to a similar extent as GLx Chi-B. The antifungal activity of GLx Chi-C became weaker with increasing ionic strength, whereas that of GLx Chi-B became slightly stronger. GLx Chi-B and -C bound to the fungal cell-walls at low ionic strength, and then GLx Chi-C was dissociated from them by an escalation of ionic strength, but this was not the case for GLx Chi-B. The chitin-binding activity of GLx Chi-B was enhanced by increasing ionic strength. These results suggest that the chitin-binding domain of basic class I chitinase binds to the chitin in fungal cell walls by hydrophobic interaction and assists the antifungal action of the chitinase.


Glycobiology | 2008

A new type of plant chitinase containing LysM domains from a fern (Pteris ryukyuensis): Roles of LysM domains in chitin binding and antifungal activity

Shoko Onaga; Toki Taira

Chitinase-A (PrChi-A), of molecular mass 42 kDa, was purified from the leaves of a fern (P. ryukyuensis) using several column chromatographies. The N-terminal amino acid sequence of PrChi-A was similar to the lysin motif (LysM). A cDNA encoding PrChi-A was cloned by rapid amplification of cDNA ends and polymerase chain reaction. It consisted of 1459 nucleotides and encoded an open-reading frame of 423-amino-acid residues. The deduced amino acid sequence indicated that PrChi-A is composed of two N-terminal LysM domains and a C-terminal catalytic domain, belonging to the group of plant class IIIb chitinases, linked by proline, serine, and threonine-rich regions. Wild-type PrChi-A had chitin-binding and antifungal activities, but a mutant without LysM domains had lost both activities. These results suggest that the LysM domains contribute significantly to the antifungal activity of PrChi-A through their binding activity to chitin in the cell wall of fungi. This is the first report of the presence in plants of a family-18 chitinase containing LysM domains.


Biochimica et Biophysica Acta | 2010

Transglycosylation reaction catalyzed by a class V chitinase from cycad, Cycas revoluta: a study involving site-directed mutagenesis, HPLC, and real-time ESI-MS.

Toki Taira; Maho Fujiwara; Nicole Dennhart; Hiroko Hayashi; Shoko Onaga; Takayuki Ohnuma; T. Letzel; Shohei Sakuda; Tamo Fukamizo

Class V chitinase from cycad, Cycas revoluta, (CrChi-A) is the first plant chitinase that has been found to possess transglycosylation activity. To identify the structural determinants that bring about transglycosylation activity, we mutated two aromatic residues, Phe166 and Trp197, which are likely located in the acceptor binding site, and the mutated enzymes (F166A, W197A) were characterized. When the time-courses of the enzymatic reaction toward chitin oligosaccharides were monitored by HPLC, the specific activity was decreased to about 5-10% of that of the wild type and the amounts of transglycosylation products were significantly reduced by the individual mutations. From comparison between the reaction time-courses obtained by HPLC and real-time ESI-MS, we found that the transglycosylation reaction takes place under the conditions used for HPLC but not under the ESI-MS conditions. The higher substrate concentration (5 mM) used for the HPLC determination is likely to bring about chitinase-catalyzed transglycosylation. Kinetic analysis of the time-courses obtained by HPLC indicated that the sugar residue affinity of +1 subsite was strongly reduced in both mutated enzymes, as compared with that of the wild type. The IC(50) value for the inhibitor allosamidin determined by real-time ESI-MS was not significantly affected by the individual mutations, indicating that the state of the allosamidin binding site (from -3 to -1 subsites) was not changed in the mutated enzymes. We concluded that the aromatic side chains of Phe166 and Trp197 in CrChi-A participate in the transglycosylation acceptor binding, thus controlling the transglycosylation activity of the enzyme.


Glycobiology | 2011

Cloning and characterization of a small family 19 chitinase from moss (Bryum coronatum)

Toki Taira; Yoko Mahoe; Noriko Kawamoto; Shoko Onaga; Hironori Iwasaki; Takayuki Ohnuma; Tamo Fukamizo

Chitinase-A (BcChi-A) was purified from a moss, Bryum coronatum, by several steps of column chromatography. The purified BcChi-A was found to be a molecular mass of 25 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and an isoelectric point of 3.5. A cDNA encoding BcChi-A was cloned by rapid amplification of cDNA ends and polymerase chain reaction. It consisted of 1012 nucleotides and encoded an open reading frame of 228 amino acid residues. The predicted mature BcChi-A consists of 205 amino acid residues and has a molecular weight of 22,654. Sequence analysis indicated that BcChi-A is glycoside hydrolase family-19 (GH19) chitinase lacking loops I, II, IV and V, and a C-terminal loop, which are present in the catalytic domain of plant class I and II chitinases. BcChi-A is a compact chitinase that has the fewest loop regions of the GH19 chitinases. Enzymatic experiments using chitooligosaccharides showed that BcChi-A has higher activity toward shorter substrates than class II enzymes. This characteristic is likely due to the loss of the loop regions that are located at the end of the substrate-binding cleft and would be involved in substrate binding of class II enzymes. This is the first report of a chitinase from mosses, nonvascular plants.


FEBS Journal | 2011

Chitin oligosaccharide binding to a family GH19 chitinase from the moss Bryum coronatum

Takayuki Ohnuma; Morten Sørlie; Tatsuya Fukuda; Noriko Kawamoto; Toki Taira; Tamo Fukamizo

Substrate binding of a family GH19 chitinase from a moss species, Bryum coronatum (BcChi‐A, 22 kDa), which is smaller than the 26 kDa family GH19 barley chitinase due to the lack of several loop regions (‘loopless’), was investigated by oligosaccharide digestion, thermal unfolding experiments and isothermal titration calorimetry (ITC). Chitin oligosaccharides [β‐1,4‐linked oligosaccharides of N‐acetylglucosamine with a polymerization degree of n, (GlcNAc)n, n = 3–6] were hydrolyzed by BcChi‐A at rates in the order (GlcNAc)6 > (GlcNAc)5 > (GlcNAc)4 >> (GlcNAc)3. From thermal unfolding experiments using the inactive BcChi‐A mutant (BcChi‐A‐E61A), in which the catalytic residue Glu61 is mutated to Ala, we found that the transition temperature (Tm) was elevated upon addition of (GlcNAc)n (n = 2–6) and that the elevation (ΔTm) was almost proportional to the degree of polymerization of (GlcNAc)n. ITC experiments provided the thermodynamic parameters for binding of (GlcNAc)n (n = 3–6) to BcChi‐A‐E61A, and revealed that the binding was driven by favorable enthalpy changes with unfavorable entropy changes. The change in heat capacity (ΔCp°) for (GlcNAc)6 binding was found to be relatively small (−105 ± 8 cal·K−1·mol−1). The binding free energy changes for (GlcNAc)6, (GlcNAc)5, (GlcNAc)4 and (GlcNAc)3 were determined to be −8.5, −7.9, −6.6 and −5.0 kcal·mol−1, respectively. Taken together, the substrate binding cleft of BcChi‐A consists of at least six subsites, in contrast to the four‐subsites binding cleft of the ‘loopless’ family 19 chitinase from Streptomyces coelicolor.


Glycobiology | 2009

A plant class V chitinase from a cycad (Cycas revoluta): Biochemical characterization, cDNA isolation, and posttranslational modification

Toki Taira; Hiroko Hayashi; Yoshiko Tajiri; Shoko Onaga; Gen-ichiro Uechi; Hironori Iwasaki; Takayuki Ohnuma; Tamo Fukamizo

Chitinase-A (CrChi-A) was purified from leaf rachises of Cycas revoluta by several steps of column chromatography. It was found to be a glycoprotein with a molecular mass of 40 kDa and an isoelectric point of 5.6. CrChi-A produced mainly (GlcNAc)(3) from the substrate (GlcNAc)(6) through a retaining mechanism. More interestingly, CrChi-A exhibited transglycosylation activity, which has not been observed in plant chitinases investigated so far. A cDNA encoding CrChi-A was cloned by rapid amplification of cDNA ends and polymerase chain reaction procedures. It consisted of 1399 nucleotides and encoded an open reading frame of 387-amino-acid residues. Sequence analysis indicated that CrChi-A belongs to the group of plant class V chitinases. From peptide mapping and mass spectrometry of the native and recombinant enzyme, we found that an N-terminal signal peptide and a C-terminal extension were removed from the precursor (M1-A387) to produce a mature N-glycosylated protein (Q24-G370). This is the first report on a plant chitinase with transglycosylation activity and posttranslational modification of a plant class V chitinase.


Current Drug Targets | 2012

Chitin-Related Enzymes in Agro-Biosciences

Yasuyuki Arakane; Toki Taira; Takayuki Ohnuma; Tamo Fukamizo

Plants utilized for agricultural productions interact with insects, fungi, and bacteria under the field conditions, affecting thereby their productivity. Since chitin and its derivatives play important roles in the interactions between these organisms, chitin-related enzymes are effective tools or drug targets for controlling the interactions. Thus, the molecular biology, protein chemistry, and enzymology of the chitin-related enzymes have been intensively studied by many investigators. Identifications and classifications of the genes encoding chitin synthetases, chitinases, chitosanases, and chitin deacetylases in these organisms were conducted, and their physiological functions were defined by knockdown, knockout, or overexpression of the corresponding genes. Recombinant enzyme productions and mutation studies are also being conducted to understand their structure and function. All of these studies have opened the way to efficiently utilize these enzyme tools for enhancing the agricultural productions.


AMB Express | 2012

An endogenous factor enhances ferulic acid decarboxylation catalyzed by phenolic acid decarboxylase from Candida guilliermondii

Hui-Kai Huang; Li-Fan Chen; Masamichi Tokashiki; Tadahiro Ozawa; Toki Taira; Susumu Ito

The gene for a eukaryotic phenolic acid decarboxylase of Candida guilliermondii was cloned, sequenced, and expressed in Escherichia coli for the first time. The structural gene contained an open reading frame of 504 bp, corresponding to 168 amino acids with a calculated molecular mass of 19,828 Da. The deduced amino sequence exhibited low similarity to those of functional phenolic acid decarboxylases previously reported from bacteria with 25-39% identity and to those of PAD1 and FDC1 proteins from Saccharomyces cerevisiae with less than 14% identity. The C. guilliermondii phenolic acid decarboxylase converted the main substrates ferulic acid and p-coumaric acid to the respective corresponding products. Surprisingly, the ultrafiltrate (Mr 10,000-cut-off) of the cell-free extract of C. guilliermondii remarkably activated the ferulic acid decarboxylation by the purified enzyme, whereas it was almost without effect on the p-coumaric acid decarboxylation. Gel-filtration chromatography of the ultrafiltrate suggested that an endogenous amino thiol-like compound with a molecular weight greater than Mr 1,400 was responsible for the activation.

Collaboration


Dive into the Toki Taira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shoko Onaga

University of the Ryukyus

View shared research outputs
Top Co-Authors

Avatar

Masaaki Yasuda

University of the Ryukyus

View shared research outputs
Top Co-Authors

Avatar

Tomoyuki Numata

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hirohide Toyama

University of the Ryukyus

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge