Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tokichi Miyakawa is active.

Publication


Featured researches published by Tokichi Miyakawa.


Bioscience, Biotechnology, and Biochemistry | 2004

Effect of Ethanol on Cell Growth of Budding Yeast: Genes That Are Important for Cell Growth in the Presence of Ethanol

Shunsuke Kubota; Ikuko Takeo; Kazunori Kume; Muneyoshi Kanai; Atsunori Shitamukai; Masaki Mizunuma; Tokichi Miyakawa; Hitoshi Shimoi; Haruyuki Iefuji; Dai Hirata

The budding yeast Saccharomyces cerevisiae has been used in the fermentation of various kinds of alcoholic beverages. But the effect of ethanol on the cell growth of this yeast is poorly understood. This study shows that the addition of ethanol causes a cell-cycle delay associated with a transient dispersion of F-actin cytoskeleton, resulting in an increase in cell size. We found that the tyrosine kinase Swe1, the negative regulator of Cdc28-Clb kinase, is related to the regulation of cell growth in the presence of ethanol. Indeed, the increase in cell size due to ethanol was partially abolished in the SWE1-deleted cells, and the amount of Swe1 protein increased transiently in the presence of ethanol. These results indicated that Swe1 is involved in cell size control in the presence of ethanol, and that a signal produced by ethanol causes a transient up-regulation of Swe1. Further we investigated comprehensively the ethanol-sensitive strains in the complete set of 4847 non-essential gene deletions and identified at least 256 genes that are important for cell growth in the presence of ethanol.


Bioscience, Biotechnology, and Biochemistry | 2007

Physiological Roles of Calcineurin in Saccharomyces cerevisiae with Special Emphasis on Its Roles in G2/M Cell-Cycle Regulation

Tokichi Miyakawa; Masaki Mizunuma

Calcineurin, a highly conserved Ca2+/CaM-dependent protein phosphatase, plays key regulatory roles in diverse biological processes from yeast to humans. Genetic and molecular analyses of the yeast model system have proved successful in dissecting complex regulatory pathways mediated by calcineurin. Saccharomyces cerevisiae calcineurin is not essential for growth under laboratory conditions, but becomes essential for survival under certain stress conditions, and is required for stress-induced expression of the genes for ion transporters and cell-wall synthesis. Yeast calcineurin, in collaboration with a Mpk1 MAP kinase cascade, is also important in G2 cell-cycle regulation due to its action in a checkpoint-like mechanism. Genetic and molecular analysis of the Ca2+-dependent cell-cycle regulation has revealed an elaborate mechanism for the calcineurin-dependent regulation of the G2/M transition, in which calcineurin multilaterally activates Swe1, a negative regulator of the Cdc28/Clb complex, at the transcriptional, posttranslational, and degradation levels.


Genes to Cells | 2005

Mutational analysis of the yeast multidrug resistance ABC transporter Pdr5p with altered drug specificity.

Andreea Cristina Tutulan‐Cunita; Makoto Mikoshi; Masaki Mizunuma; Dai Hirata; Tokichi Miyakawa

Multidrug resistance ABC transporter Pdr5p of Saccharomyces cerevisiae is particularly important due to its ability to export a wide range of unrelated substrates. To clarify its function, we generated Pdr5p mutants by random mutagenesis and screened for mutants with altered drug specificity in vivo by using 5 drug compounds. Nine point mutations that caused significant changes in drug specificity distributed throughout the length of Pdr5p, namely, in the extracellular, transmembrane or cytoplasmic regions of the transporter. We then investigated their effects upon drug resistance, using 36 chemically related or distinct substrates. From this study, overall geometry of the Pdr5p was suggested to contribute in acquiring the enormous range of drug specificity. Based on their ability to inhibit the growth of the mutant strains, the 36 tested drugs were classified into: drugs to which the mutants responded differently (Group 1), drugs to which all the mutants showed sensitivity (Group 2), and drugs to which all the mutants exhibited resistance (Group 3). The ability of the compounds to be partitioned to the plasma membrane seemed an important factor for recognition by Pdr5p.


EMBO Reports | 2006

Involvement of calcineurin-dependent degradation of Yap1p in Ca2+-induced G2 cell-cycle regulation in Saccharomyces cerevisiae

Hiroshi Yokoyama; Masaki Mizunuma; Michiyo Okamoto; Josuke Yamamoto; Dai Hirata; Tokichi Miyakawa

The Ca2+‐activated pathways in Saccharomyces cerevisiae induce a delay in the onset of mitosis through the activation of Swe1p, a negative regulatory kinase that inhibits the Cdc28p/Clb complex. We isolated the YAP1 gene as a multicopy suppressor of calcium sensitivity owing to the loss of ZDS1, a negative regulator of SWE1 and CLN2 gene expression. YAP1 deletion on a zds1Δ background exacerbated the Ca2+‐related phenotype. Yap1p was degraded in a calcineurin‐dependent manner when cells were exposed to calcium. In yap1Δ cells, the expression level of the RPN4 gene encoding a transcription factor for the subunits of the ubiquitin–proteasome system was diminished. The deletion of YAP1 gene or RPN4 gene led to the accumulation of Swe1p and Cln2p. Yap1p was a substrate of calcineurin in vivo and in vitro. The calcineurin‐mediated Yap1p degradation seems to be a long adaptive response that assures a G2 delay in response to a stress that causes the activation of the calcium signalling pathways.


Bioscience, Biotechnology, and Biochemistry | 2008

Inhibition of Ca2+ -signal-dependent growth regulation by radicicol in budding yeast

Ruthada Chanklan; Eiji Aihara; Saori Koga; Hidetoshi Takahashi; Masaki Mizunuma; Tokichi Miyakawa

Compelled activation of Ca2+ signaling by exposure of zds1Δ strain Saccharomyces cerevisiae cells to external CaCl2 leads to characteristic physiological consequences such as growth inhibition in the G2 phase and polarized bud growth. Screening of microbial metabolites for activity alleviating the deleterious physiological effects of external CaCl2 identified the Hsp90 inhibitor radicicol as an inhibitor of Ca2+-signal-dependent cell-cycle regulation in yeast. Radicicol alleviated analogous physiological effects due to the expression of a constitutively active form of calcineurin or overexpression of Swe1, the negative regulatory kinase of the Cdc28-Clb complex. Western blot analysis indicated that radicicol inhibited Ca2+-induced accumulation of Swe1 and Cln2.


Eukaryotic Cell | 2008

The Cytoplasmic Region of α-1,6-Mannosyltransferase Mnn9p Is Crucial for Retrograde Transport from the Golgi Apparatus to the Endoplasmic Reticulum in Saccharomyces cerevisiae

Michiyo Okamoto; Takehiko Yoko-o; Tokichi Miyakawa; Yoshifumi Jigami

ABSTRACT In Saccharomyces cerevisiae, Och1p and Mnn9p mannosyltransferases are localized in the cis-Golgi. Attempts to live image Och1p and Mnn9p tagged with green fluorescent protein or red fluorescent protein, respectively, using a high-performance confocal laser scanning microscope system resulted in simultaneous visualization of the native proteins in a living cell. Our observations revealed that Och1p and Mnn9p are not always colocalized to the same cisternae. The difference in the dynamics of these mannosyltransferases may reflect differences in the mechanisms for their retention in the cis-Golgi, since it has been reported that Mnn9p cycles between the endoplasmic reticulum and the cis-Golgi whereas Och1p does not (Z. Todorow, A. Spang, E. Carmack, J. Yates, and R. Schekman, Proc. Natl. Acad. Sci. USA 97:13643-13648, 2000). We investigated the localization of chimeric proteins of Mnn9p and Och1p in sec12 and erd1 mutant cells. A chimeric protein, M16/O16, which consists of the N-terminal cytoplasmic region of Mnn9p and the transmembrane and luminal region of Och1p, behaved like Mnn9p, suggesting that the N-terminal cytoplasmic region is important for the intracellular dynamics of Mnn9p. This observation is supported by results from subcellular-fractionation experiments. Mutational analysis revealed that two arginine residues in the N-terminal region of Mnn9p are important for the chimeric protein to cycle between the endoplasmic reticulum and the Golgi apparatus.


Biochemical and Biophysical Research Communications | 2008

Identification of Tup1 and Cyc8 mutations defective in the responses to osmotic stress

Yoshifumi Kobayashi; Tomomi Inai; Masaki Mizunuma; Ichitaro Okada; Atsunori Shitamukai; Dai Hirata; Tokichi Miyakawa

In the yeast Saccharomyces cerevisiae, Tup1, in association with Cyc8 (Ssn6), functions as a general transcriptional corepressor. This repression is mediated by recruitment of the Tup1-Cyc8 complex to target promoters through sequence-specific DNA-binding proteins such as Sko1, which mediates the HOG pathway-dependent regulation. We identified tup1 and cyc8 mutant alleles as the suppressor of osmo-sensitivity of the hog1Delta strain. In these mutants, although the expression of the genes under the control of DNA-binding proteins other than Sko1 was apparently normal, the Sko1-regulated genes GRE2 and AHP1 were derepressed under non-stress conditions, suggesting that the Tup1 and Cyc8 mutant proteins were specifically defective in the repression of the Sko1-dependent genes. Chromatin immunoprecipitation analyses of the GRE2 promoter in the mutants demonstrated that the Sko1-Tup1-Cyc8 complex was localized to the promoter, together with Gcn5/SAGA, suggesting that the erroneous recruitment of SAGA to the promoter led to the derepression.


Bioscience, Biotechnology, and Biochemistry | 2006

Identification of Saccharomyces cerevisiae ribosomal protein L3 as a target of curvularol, a G1-specific inhibitor of mammalian cells

Yoshifumi Kobayashi; Masaki Mizunuma; Tokichi Miyakawa

The cellular target of curvularol, a G1-specific cell-cycle inhibitor of mammalian cells, was identified by a genetic approach in Saccharomyces cerevisiae. Since the wild-type W303 strain was highly resistant to curvularol, a drug hypersensitive parental strain was constructed in which various genes implicated in general drug resistance had been disrupted. Curvularol resistant mutants were isolated, and strains that exhibited a semi-dominant, curvularol-specific resistance phenotype were selected. All five strains examined were classified into a single genetic complementation group designated YCR1. A mutant gene responsible for curvularol resistance was identified as an allele of the RPL3 gene encoding the ribosomal protein L3. Sequence analysis of the mutant genes revealed that Trp255Cys and Trp255Leu substitutions of Rpl3p are responsible for curvularol resistance. Rpl3p mutants in which Trp255 residue was replaced by other amino acids were constructed. All of these replacements led to varying degrees of increased resistance to curvularol and growth defects.


Journal of Cell Science | 2005

Implication of Pkc1p protein kinase C in sustaining Cln2p level and polarized bud growth in response to calcium signaling in Saccharomyces cerevisiae

Masaki Mizunuma; Dai Hirata; Tokichi Miyakawa

Protein kinase C, a highly conserved signaling molecule among eukaryotes, has been implicated in the regulation of cellular processes such as cell proliferation and polarized growth. In Saccharomyces cerevisiae, the unique protein kinase C Pkc1p is thought to have multiple functions, including the activation of the Mpk1p (Slt2p) MAP kinase pathway, which is essential for cell wall construction and bud emergence. However, little is known about the other functions of Pkc1p. In the course of screening for the mutants that suppress the Ca2+-sensitivity phenotype of the Ca2+-sensitive strain zdsΔ, we isolated a novel mutant allele (scz6/pkc1-834) of PKC1. Unlike the previously characterized PKC1 allele stt1-1, heat-shock-induced Mpk1p activation and cell-wall integrity were not impaired in the pkc1-834 mutant. By contrast, the mutant was defective in the maintenance of Ca2+-induced F-actin polarization in a manner independent of Mpk1p activation. This phenotype was caused by a decreased expression level of the G1 cyclin Cln2p. The Rho1 small G protein molecular switch was suggested to be involved in the novel Pkc1p function. The Pkc1p novel function was required for posttranscriptional upregulation of Cln2p and appeared to be important for the coordinated regulation of polar bud growth and the cell cycle.


Bioscience, Biotechnology, and Biochemistry | 2009

Combinatorial Gene Overexpression and Recessive Mutant Gene Introduction in Sake Yeast

Akihiko Ano; Daisuke Suehiro; Kamonchai Cha-aim; Kazuo Aritomi; Prasart Phonimdaeng; Ngarmnit Nontaso; Hisashi Hoshida; Masaki Mizunuma; Tokichi Miyakawa; Rinji Akada

Industrial yeast strains are generally diploid and are often defective in sporulation. Such strains are hence thought to be less tractable for manipulation by genetic engineering. To facilitate more reliable genetic manipulation of the diploid yeast Japanese sake, we constructed variants of this strain that were homozygous for a URA3 deletion, homozygous for either MAT a or MATα, and homozygous for either the his3 or the lys4 mutation. A ura3-null genotype enabled gene targeting to be undertaken more easily. The TDH3 promoter was inserted upstream of six yeast genes that have been implicated in flavor control to drive their constitutive overexpression. The homozygous MAT alleles, combined with the non-complementary auxotrophic mutations in the targeted transformants, allowed for tetraploid selection through mating. This resulted in the combinatorial construction of tetraploid strains that overexpress two different genes simultaneously. In addition, a recessive mutant gene, sah1-1, that is known to overproduce S-adenosylmethionine, was introduced into the diploid sake strain by the replacement of one wild-type allele and subsequent disruption of the other. The resulting sah1-1/sah1Δ::URA3 strain produced higher amounts of S-adenosylmethionine than the wild type. The novel sake yeast diploid strains we generated in this study can thus undergo simple PCR-mediated gene manipulation and mating in a manner analogous to established laboratory strains. Moreover, none of these sake strains had extraneous sequences, and they are thus suitable for use in commercial applications.

Collaboration


Dive into the Tokichi Miyakawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge