Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tokimitsu Morimoto is active.

Publication


Featured researches published by Tokimitsu Morimoto.


Journal of Bone and Mineral Metabolism | 2014

IL-6 negatively regulates osteoblast differentiation through the SHP2/MEK2 and SHP2/Akt2 pathways in vitro

Shoichi Kaneshiro; Kosuke Ebina; Kenrin Shi; Chikahisa Higuchi; Makoto Hirao; Michio Okamoto; Kota Koizumi; Tokimitsu Morimoto; Hideki Yoshikawa; Jun Hashimoto

It has been suggested that interleukin-6 (IL-6) plays a key role in the pathogenesis of rheumatoid arthritis (RA), including osteoporosis not only in inflamed joints but also in the whole body. However, previous in vitro studies regarding the effects of IL-6 on osteoblast differentiation are inconsistent. The aim of this study was to examine the effects and signal transduction of IL-6 on osteoblast differentiation in MC3T3-E1 cells and primary murine calvarial osteoblasts. IL-6 and its soluble receptor significantly reduced alkaline phosphatase (ALP) activity, the expression of osteoblastic genes (Runx2, osterix, and osteocalcin), and mineralization in a dose-dependent manner, which indicates negative effects of IL-6 on osteoblast differentiation. Signal transduction studies demonstrated that IL-6 activated not only two major signaling pathways, SHP2/MEK/ERK and JAK/STAT3, but also the SHP2/PI3K/Akt2 signaling pathway. The negative effect of IL-6 on osteoblast differentiation was restored by inhibition of MEK as well as PI3K, while it was enhanced by inhibition of STAT3. Knockdown of MEK2 and Akt2 transfected with siRNA enhanced ALP activity and gene expression of Runx2. These results indicate that IL-6 negatively regulates osteoblast differentiation through SHP2/MEK2/ERK and SHP2/PI3K/Akt2 pathways, while affecting it positively through JAK/STAT3. Inhibition of MEK2 and Akt2 signaling in osteoblasts might be of potential use in the treatment of osteoporosis in RA.


PLOS ONE | 2013

Oxygen and Air Nanobubble Water Solution Promote the Growth of Plants, Fishes, and Mice

Kosuke Ebina; Kenrin Shi; Makoto Hirao; Jun Hashimoto; Yoshitaka Kawato; Shoichi Kaneshiro; Tokimitsu Morimoto; Kota Koizumi; Hideki Yoshikawa

Nanobubbles (<200 nm in diameter) have several unique properties such as long lifetime in liquid owing to its negatively charged surface, and its high gas solubility into the liquid owing to its high internal pressure. They are used in variety of fields including diagnostic aids and drug delivery, while there are no reports assessing their effects on the growth of lives. Nanobubbles of air or oxygen gas were generated using a nanobubble aerator (BUVITAS; Ligaric Company Limited, Osaka, Japan). Brassica campestris were cultured hydroponically for 4 weeks within air-nanobubble water or within normal water. Sweetfish (for 3 weeks) and rainbow trout (for 6 weeks) were kept either within air-nanobubble water or within normal water. Finally, 5 week-old male DBA1/J mice were bred with normal free-chaw and free-drinking either of oxygen-nanobubble water or of normal water for 12 weeks. Oxygen-nanobubble significantly increased the dissolved oxygen concentration of water as well as concentration/size of nanobubbles which were relatively stable for 70 days. Air-nanobubble water significantly promoted the height (19.1 vs. 16.7 cm; P<0.05), length of leaves (24.4 vs. 22.4 cm; P<0.01), and aerial fresh weight (27.3 vs. 20.3 g; P<0.01) of Brassica campestris compared to normal water. Total weight of sweetfish increased from 3.0 to 6.4 kg in normal water, whereas it increased from 3.0 to 10.2 kg in air-nanobubble water. In addition, total weight of rainbow trout increased from 50.0 to 129.5 kg in normal water, whereas it increased from 50.0 to 148.0 kg in air-nanobubble water. Free oral intake of oxygen-nanobubble water significantly promoted the weight (23.5 vs. 21.8 g; P<0.01) and the length (17.0 vs. 16.1 cm; P<0.001) of mice compared to that of normal water. We have demonstrated for the first time that oxygen and air-nanobubble water may be potentially effective tools for the growth of lives.


Oncology Letters | 2014

Malignant phosphaturic mesenchymal tumor of the pelvis: A report of two cases

Tokimitsu Morimoto; Satoshi Takenaka; Nobuyuki Hashimoto; Nobuhito Araki; Akira Myoui; Hideki Yoshikawa

Tumor-induced osteomalacia (TIO) is a rare acquired form of hypophosphatemia commonly associated with phosphaturic mesenchymal tumors (PMTs) located in the bone or soft tissue. Resection of the tumor can cure osteomalacia. Fibroblast growth factor 23 has been identified as a major pathophysiological factor responsible for phosphaturia. The majority of PMTs are benign, and malignant PMTs are uncommon. Even in rare cases, the malignant transformation of PMTs is extremely uncommon. The current study presents two cases in which the patients succumbed to malignant PMTs that developed in the pelvis. The first patient was a 35-year-old female with a malignant PMT occurring as a synchronous double cancer associated with papillary thyroid carcinoma. Diagnosis was difficult, as the multiple uptake on positron emission tomography with 18F-fluorodeoxyglucose presented as pseudofractures mimicking the metastases of thyroid carcinoma. The patient succumbed to rapidly progressive lung metastases. The second patient presented with a pelvic tumor that had developed over 26 years. The patient was diagnosed with a benign PMT by open biopsy and a complete resection was performed. However, two years later, the tumor recurred and lung metastases were observed. The patient ultimately succumbed to respiratory failure due to relapsing lung metastases and disseminated intravascular coagulation. These two cases demonstrate the potential lethality of malignant PMTs and the malignant transformation of benign PMTs. Therefore, TIO patients must be followed up even if diagnosed with a benign tumor. Although TIO is an extremely rare disease, the possibility of malignant PMTs must be recognized.


Journal of Bone and Joint Surgery, American Volume | 2014

Effect of Intermittent Administration of Teriparatide (Parathyroid Hormone 1-34) on Bone Morphogenetic Protein-Induced Bone Formation in a Rat Model of Spinal Fusion.

Tokimitsu Morimoto; Takashi Kaito; Masafumi Kashii; Yohei Matsuo; Tsuyoshi Sugiura; Motoki Iwasaki; Hideki Yoshikawa

BACKGROUND Although clinical bone morphogenetic protein (BMP) therapy is effective at enhancing bone formation in patients managed with spinal arthrodesis, the required doses are very high. Teriparatide (parathyroid hormone 1-34) is approved by the U.S. Food and Drug Administration to treat osteoporosis and is a potent anabolic agent. In this study, intermittent administration of parathyroid hormone 1-34 combined with transplantation of BMP was performed to elucidate the effect of parathyroid hormone 1-34 on the fusion rate and quality of newly formed bone in a rat model. METHODS A total of forty-eight male Sprague-Dawley rats underwent posterolateral lumbar spinal arthrodesis with one of three different treatments with recombinant human (rh) BMP-2: (1) 0 μg (control), (2) 2 μg (low dose), or (3) 50 μg (high dose). Each of the rhBMP-2 treatments was studied in combination with intermittent injections of either parathyroid hormone 1-34 (180 μg/kg/wk) or saline solution starting two weeks before the operation and continuing until six weeks after the operation. Osseous fusion was assessed with use of radiographs and a manual palpation test. Microstructural indices of the newly formed bone were evaluated with use of micro-computed tomography. The serum markers of bone metabolism were also quantified. RESULTS The fusion rate in the group treated with 2 μg of rhBMP-2 significantly increased (from 57% to 100%) with the administration of parathyroid hormone 1-34 (p < 0.05). The fusion rates in the other groups did not change significantly with the administration of parathyroid hormone 1-34. The bone volume density of the newly formed bone significantly increased in both the 2-μg and 50-μg rhBMP-2 treatment groups with the administration of parathyroid hormone 1-34 (p < 0.01). Micro-computed tomography scans of the newly formed bone clearly demonstrated an abundance of trabecular bone formation in the group treated with parathyroid hormone 1-34. In addition, serum levels of osteocalcin were significantly increased in the parathyroid hormone 1-34 treatment group. CONCLUSIONS Intermittent administration of parathyroid hormone 1-34 significantly increased fusion rates in the group treated with low-dose rhBMP-2, and it improved the quality of the newly formed bone in both the high and low-dose groups in a rat model of rhBMP-2-induced spinal fusion. CLINICAL RELEVANCE Our results suggest that the combined administration of rhBMP-2 and parathyroid hormone 1-34 may lead to efficient bone regeneration.


Biochemical and Biophysical Research Communications | 2015

Progranulin plays crucial roles in preserving bone mass by inhibiting TNF-α-induced osteoclastogenesis and promoting osteoblastic differentiation in mice.

Takaaki Noguchi; Kosuke Ebina; Makoto Hirao; Ryota Kawase; Tohru Ohama; Shizuya Yamashita; Tokimitsu Morimoto; Kota Koizumi; Kazuma Kitaguchi; Hozo Matsuoka; Shoichi Kaneshiro; Hideki Yoshikawa

A close correlation between atherosclerosis, inflammation, and osteoporosis has been recognized, although the precise mechanism remains unclear. The growth factor progranulin (PGRN) is expressed in various cells such as macrophages, leukocytes, and chondrocytes. PGRN plays critical roles in a variety of diseases, such as atherosclerosis and arthritis by inhibiting Tumor Necrosis Factor-α (TNF-α) signaling. The purpose of this study was to investigate the effect of PGRN on bone metabolism. Forty-eight-week old female homozygous PGRN knockout mice (PGRN-KO) (n = 8) demonstrated severe low bone mass in the distal femur compared to age- and sex-matched wild type C57BL/6J mice (WT) (n = 8) [BV/TV (%): 5.8 vs. 16.6; p < 0.001, trabecular number (1/mm): 1.6 vs. 3.8; p < 0.001]. In vitro, PGRN inhibited TNF-α-induced osteoclastogenesis from spleen cells of PGRN-KO mice. Moreover, PGRN significantly promoted ALP activity, osteoblast-related mRNA (ALP, osteocalcin) expression in a dose-dependent manner and up-regulated osteoblastic differentiation by down-regulating phosphorylation of ERK1/2 in mouse calvarial cells. In conclusion, PGRN may be a promising treatment target for both atherosclerosis and inflammation-related osteoporosis.


The Spine Journal | 2015

The bone morphogenetic protein-2/7 heterodimer is a stronger inducer of bone regeneration than the individual homodimers in a rat spinal fusion model

Tokimitsu Morimoto; Takashi Kaito; Yohei Matsuo; Tsuyoshi Sugiura; Masafumi Kashii; Takahiro Makino; Motoki Iwasaki; Hideki Yoshikawa

BACKGROUND CONTEXT Bone morphogenetic proteins (BMPs) are a group of dimeric growth factors that belong to the transforming growth factor super family and are capable of eliciting new bone formation. Previous studies have suggested that the coexpression of two different BMP genes in a cell can result in the production of BMP heterodimers that are more potent than homodimers. However, because of the difficulty in optimizing the level of BMP gene expression, the coexpression of two different BMP genes also produces BMP homodimers as a by-product. These homodimers could, in theory, interact with the heterodimers. PURPOSE To elucidate the effects of a BMP-2/7 heterodimer, which were investigated in depth using purified BMP-2/7 heterodimers, BMP-2 homodimers, and BMP-7 homodimers in a rat spinal fusion model. METHODS Bilateral posterolateral fusion at L4-L5 was performed in four different groups: control group animals were implanted with collagen carriers alone; BMP-7 group animals with collagen carriers+1 μg of BMP-7 homodimer; BMP-2 group animals with collagen carriers+1 μg of BMP-2 homodimer; and BMP-2/7 group animals with collagen carriers+1 μg of the BMP-2/7 heterodimer. The following assessments were performed: bone microstructural analysis of the fusion mass and tissue volume (TV) with microcomputed tomography (micro-CT); fusion assessment with manual palpation testing and three-dimensional CT images; and bone histomorphometrical analysis of the fusion mass. RESULTS The fusion scores, as determined by radiography, and the TV of the newly formed bone, as determined by micro-CT, were significantly higher in the BMP-2/7 heterodimer group than the other groups (p<.0001). The microstructural indices of the newly formed bone did not differ between the groups. Moreover, histologic analysis of the fused spines revealed that the formation of the trabecular bone bridging the transverse process was the highest in this group. CONCLUSIONS This study demonstrated that BMP-2/7 heterodimer is a stronger inducer of bone regeneration than BMP-2 or -7 homodimers. The use of a purified BMP-2/7 heterodimer may represent an efficient alternative to the current clinical use of BMP-2 or -7 homodimers. Further studies as to the side effects of BMP-2/7 heterodimer are required.


Bone reports | 2016

Modeling and remodeling effects of intermittent administration of teriparatide (parathyroid hormone 1-34) on bone morphogenetic protein-induced bone in a rat spinal fusion model

Takashi Kaito; Tokimitsu Morimoto; Sadaaki Kanayama; Satoru Otsuru; Masafumi Kashii; Takahiro Makino; Kazuma Kitaguchi; Masayuki Furuya; Ryota Chijimatsu; Kosuke Ebina; Hideki Yoshikawa

Background Bone morphogenetic protein (BMP)-based tissue engineering has focused on inducing new bone efficiently. However, modeling and remodeling of BMP-induced bone have rarely been discussed. Teriparatide (parathyroid hormone [PTH] 1-34) administration initially increases markers of bone formation, followed by an increase in bone resorption markers. This unique activity would be expected to accelerate the modeling and remodeling of new BMP-induced bone. Methods Male Sprague-Dawley rats underwent posterolateral spinal fusion surgery and implantation of collagen sponge containing either 50 μg recombinant human (rh)BMP-2 or saline. PTH 1-34 (60 μg/kg, 3 times/week) or saline injections were continued from preoperative week 2 week to postoperative week 12. The volume and quality of newly formed bone were monitored by in vivo micro-computed tomography and analyses of bone histomorphometry and serum bone metabolism markers were conducted at postoperative week 12. Results Microstructural indices of the newly formed bone were significantly improved by PTH 1-34 administration, which significantly decreased the tissue volumes of the fusion mass at postoperative week 12 compared to that at postoperative week 2. Bone histomorphometry and serum analyses showed that PTH administration significantly increased both bone formation and resorption markers. Analysis of the histomorphometry of cortical bone identified predominant periosteal bone resorption and endosteal bone formation. Conclusions Long-term intermittent administration of PTH 1-34 significantly accelerated the modeling and remodeling of new BMP-induced bone. Clinical relevance Our results suggest that the combined administration of rhBMP-2 and PTH 1-34 facilitates qualitative and quantitative improvements in bone regeneration, by accelerating bone modeling and remodeling.


The Spine Journal | 2018

BMP-2/7 heterodimer strongly induces bone regeneration in the absence of increased soft tissue inflammation

Takashi Kaito; Tokimitsu Morimoto; Yuki Mori; Sadaaki Kanayama; Takahiro Makino; Shota Takenaka; Yusuke Sakai; Satoru Otsuru; Yoshichika Yoshioka; Hideki Yoshikawa

BACKGROUND CONTEXT Bone morphogenetic protein (BMP)-2/7 heterodimer is a stronger inducer of bone regeneration than individual homodimers. However, clinical application of its potent bone induction ability may be hampered if its use is accompanied by excessive inflammatory reactions. PURPOSE We sought to quantitatively evaluate bone induction and inflammatory reactions by BMP heterodimer and corresponding BMP homodimers using ultra-high resolution magnetic resonance imaging (MRI) and micro-computed tomography. STUDY DESIGN An experimental animal study was carried out. METHODS A total of 32 absorbable collagen sponge implantations into dorsal muscle were performed in rats of four different groups (control group, 0 µg BMP; recombinant human (rh)BMP-7 group, 3 µg rhBMP-7; rhBMP-2 group, 3 µg rhBMP-2; rhBMP-2/7 group, 3 µg rhBMP-2/7). Inflammatory reactions were evaluated by 11.7-T MRI (axial T2-weighted imaging using rapid acquisition with relaxation enhancement) at postoperative days 2 and 7. Bone volumes (BVs) of the induced ectopic bone were quantified at postoperative day 7. In addition, immunohistochemical staining for interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α was performed in samples obtained on postoperative day 2. Bone formation (BF)-to-inflammation (IM) ratios were calculated by dividing BVs by values of inflamed areas. RESULTS At postoperative day 2, the mean volume of T2 high area on MRI scans in BMP-2 group was significantly larger than that in control group. In contrast, the BMP-2/7 had no difference in the mean volume of T2 high area compared with the control group; however, there was no difference between the BMP-2/7 compared with BMP-2 group. At postoperative day 7, the volumes of T2 high area were not different between the groups. Mean BV of the newly formed bone on postoperative day 7 was significantly greater in BMP-2/7 group than in BMP-7 groups. No new bone formation was observed in control group. BF-to-IM ratio in BMP-2/7 group was significantly higher than those in BMP-2 and BMP-7 homodimer groups. Immunohistochemistry experiments did not reveal differences in expression levels of IL-1β, IL-6, or TNF-α in samples from BMP-2, BMP-7, and BMP-2/7 groups. CONCLUSIONS This study demonstrated that BMP-2/7 heterodimer has stronger bone induction ability without accompanying increased inflammatory reactions (the increased BF-to-IM ratio) than those observed by BMP-2 or BMP-7 homodimers. These results suggest that BMP-2/7 heterodimer can be an alternative to BMP-2 and BMP-7 homodimers in clinical applications, although further translational studies, including whether lower doses of BMP heterodimer may produce similar bone formation compared with the BMP homodimers but produce a reduced inflammatory response, are required.


PLOS ONE | 2017

Comparison of the effects of forefoot joint-preserving arthroplasty and resection-replacement arthroplasty on walking plantar pressure distribution and patient-based outcomes in patients with rheumatoid arthritis

Kosuke Ebina; Makoto Hirao; Keishi Takagi; Sachi Ueno; Tokimitsu Morimoto; Hozo Matsuoka; Kazuma Kitaguchi; Toru Iwahashi; Jun Hashimoto; Hideki Yoshikawa

Purpose The purpose of this retrospective study is to clarify the difference in plantar pressure distribution during walking and related patient-based outcomes between forefoot joint-preserving arthroplasty and resection-replacement arthroplasty in patients with rheumatoid arthritis (RA). Methods Four groups of patients were recruited. Group1 included 22 feet of 11 healthy controls (age 48.6 years), Group2 included 36 feet of 28 RA patients with deformed non-operated feet (age 64.8 years, Disease activity score assessing 28 joints with CRP [DAS28-CRP] 2.3), Group3 included 27 feet of 20 RA patients with metatarsal head resection-replacement arthroplasty (age 60.7 years, post-operative duration 5.6 years, DAS28-CRP 2.4), and Group4 included 34 feet of 29 RA patients with metatarsophalangeal (MTP) joint-preserving arthroplasty (age 64.6 years, post-operative duration 3.2 years, DAS28-CRP 2.3). Patients were cross-sectionally examined by F-SCAN II to evaluate walking plantar pressure, and the self-administered foot evaluation questionnaire (SAFE-Q). Twenty joint-preserving arthroplasty feet were longitudinally examined at both pre- and post-operation. Results In the 1st MTP joint, Group4 showed higher pressure distribution (13.7%) than Group2 (8.0%) and Group3 (6.7%) (P<0.001). In the 2nd-3rd MTP joint, Group4 showed lower pressure distribution (9.0%) than Group2 (14.5%) (P<0.001) and Group3 (11.5%) (P<0.05). On longitudinal analysis, Group4 showed increased 1st MTP joint pressure (8.5% vs. 14.7%; P<0.001) and decreased 2nd-3rd MTP joint pressure (15.2% vs. 10.7%; P<0.01) distribution. In the SAFE-Q subscale scores, Group4 showed higher scores than Group3 in pain and pain-related scores (84.1 vs. 71.7; P<0.01) and in shoe-related scores (62.5 vs. 43.1; P<0.01). Conclusions Joint-preserving arthroplasty resulted in higher 1st MTP joint and lower 2nd-3rd MTP joint pressures than resection-replacement arthroplasty, which were associated with better patient-based outcomes.


Scoliosis | 2013

A novel spinal brace in management of scoliosis due to cerebral palsy. Radiological and subjective clinical results after at least one year of treatment

Ichiro Kajiura; Yu Moriguchi; Yoshihiro Matsui; Tokimitsu Morimoto; Yohei Matsuo; Motoki Iwasaki; Tsunehiko Suzuki

Background Severe scoliosis in patients with cerebral palsy (CP) causes difficulty in sitting balance and creates increased nursing demands. Surgical stabilization has proven to be a valuable method to stop the progression of scoliosis [1]. However, the complication rate after such surgery is substantial[2]. Additionally, many patients with quadriplegia and large curvatures of the spine have impaired general health, epilepsy and reduced respiratory capacity, making them poor candidates for major surgery like spine fusion. Therefore, other treatment alternatives should be available. We have recently developed a spinal brace named Dynamic Spinal Brace (DSB), which is a custom-molded, polycarbonate orthosis characterized by lightness and flexibility. Unlike the other underarm orthoses, DSB does not fix the pelvic girdle rigidly and, thus, potentially contributes to good compliance with bracing.

Collaboration


Dive into the Tokimitsu Morimoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge