Tokutaro Yasue
Shinshu University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tokutaro Yasue.
Circulation | 2005
Hisashi Shimizu; Masafumi Takahashi; Takashi Kaneko; Takashi Murakami; Yoji Hakamata; Shinji Kudou; Tetsuya Kishi; Kazunori Fukuchi; Satoru Iwanami; Kazuhiko Kuriyama; Tokutaro Yasue; Shin Enosawa; Koshi Matsumoto; Izumi Takeyoshi; Yasuo Morishita; Eiji Kobayashi
Background—A novel immunomodulator, KRP-203, the molecular structure of which has some similarity to FTY720, has been developed for use in organ transplantation. The present study was designed to investigate the potency and safety of KRP-203 on allograft survival against both acute and chronic rejection in rat skin and heart transplantation. Methods and Results—KRP-203 significantly prolonged skin or heart allograft survival of a minor histocompatibility complex (mHC)–disparate (LEW to F344) rat combination. Histopathological and immunohistochemical analysis at 100 days after mHC-disparate rat heart transplantation revealed that KRP-203 treatment significantly inhibited infiltration of inflammatory cells, including macrophages and T cells; expression of endothelin-1 and transforming growth factor-β1; and IgG deposition and eventually attenuated neointimal formation and myocardial fibrosis. KRP-203 also prolonged heart allograft survival in a major histocompatibility complex (MHC)-incompatible (DA to LEW) rat combination, but the efficacy was not as significant. However, KRP-203 combined with a subtherapeutic dose of cyclosporin A synergistically prolonged the heart allograft survival. Flow cytometric analysis demonstrated that KRP-203 reduced the number of peripheral blood mononuclear cells (lymphocytes and monocytes) but not granulocytes and enhanced lymphocyte homing into peripheral lymph nodes. The influence of KRP-203 on heart rate changes in Hartley guinea pigs was examined. KRP-203 had less of a tendency to cause bradycardia than FTY720. Conclusions—These findings demonstrated that KRP-203 prolonged skin and heart allograft survival and significantly attenuated chronic rejection and bradycardia as an adverse effect. Therefore, KRP-203 offers considerable potential as a novel therapeutic immunosuppressant in patients with organ transplantation.
Journal of Pharmacology and Experimental Therapeutics | 2007
Jinghai Song; Chu Matsuda; Yasuyuki Kai; Toshirou Nishida; Kiyokazu Nakajima; Tsunekazu Mizushima; Miki Kinoshita; Tokutaro Yasue; Yoshiki Sawa; Toshinori Ito
Current treatments for patients with Crohns disease (CD) are based on recent advances in elucidating the pathophysiology of the disease. A satisfactory therapeutic strategy has not been well established. A new sphingosine 1-phosphate (S1P) receptor agonist, 2-amino-2-propanediol hydrochloride (KRP-203), has been developed for immunomodulation in autoimmune diseases and organ transplantation. We aimed to evaluate the efficacy and potency of KRP-203 on the treatment of chronic colitis in an interleukin (IL)-10 gene-deficient (IL-10–/–) mouse model. KRP-203 agonistic activity on S1P receptor was assessed in vitro. KRP-203 was administered for 1 or 4 weeks to IL-10–/– mice with clinical signs of colitis. The histological appearance of the colon and the numbers, phenotype, and cytokine production of lymphocytes were compared with a control group. KRP-203 treatment was effective in preventing body weight loss in the IL-10–/– colitis model. One-week administration resulted in the sequestration of circulating lymphocytes within the secondary lymphoid tissues. After 4 weeks of treatment, highly significant reductions were observed in number of CD4+ T cell and B220+ B cell subpopulations in the lamina propria of the colon and peripheral blood. KRP-203 obviously inhibited the production of interferon-γ, IL-12, and tumor necrosis factor-α by the colonic lymphocytes, but had no influence on IL-4 production. KRP-203 significantly inhibits ongoing IL-10–/– colitis in part through decreasing the infiltration of lymphocytes at inflammatory sites and by blocking T-helper 1 cytokine production in the colonic mucosa. Therefore, the possibility arises that KRP-203 plays a potential role in control of chronic colitis.
Transplantation | 2006
Jun Fujishiro; Shinji Kudou; Satomi Iwai; Masafumi Takahashi; Yoji Hakamata; Miki Kinoshita; Satoru Iwanami; Shigeru Izawa; Tokutaro Yasue; Kohei Hashizume; Takashi Murakami; Eiji Kobayashi
Background. We demonstrate the long-term effectiveness of KRP-203 treatment in combination with a subtherapeutic dose of cyclosporine A (CsA) on rat renal allografts. Methods. We tested the effect of KRP-203 in combination with CsA using a rat skin allograft model. The Pharmacokinetic interaction between CsA and KRP-203 was evaluated. The selectivity of KRP-203 for sphingosine-1-phosphate (S1P)1 and S1P3 receptors were investigated in vitro. Heart rate alteration following bolus injection of phosphorylated KRP-203 (KRP-203-P) or FTY720 (FTY720-P) was also monitored in rats. Finally, the long-term effectiveness of KRP-203 in conjunction with a low dose of CsA was investigated in a rat renal transplantation model. Results. Administration of KRP-203 with CsA prolonged skin allograft survival. KRP-203 and CsA had no effect on the pharmacokinetics of the other. While FTY720-P activated both S1P1 and S1P3 receptors, KRP-203-P selectively activated S1P1, but not the S1P3 receptor (EC50: >1000 nM). Compared to FTY720-P, a tenfold higher dose of KRP-203-P was necessary to induce transient bradycardia. With a low dose of CsA (1 mg/kg/day), KRP-203 (0.3 mg/kg/day) significantly prolonged renal allograft survival (P<0.05, survival time: 9.8 days (CsA) vs. >27.4 days (CsA+KRP)). Although a higher dose of CsA (3 mg/kg/day) alone kept recipients alive, this caused severe renal graft dysfunction. Use of KRP-203 (3 mg/kg/day) in conjunction with CsA markedly improved graft function (P<0.05, creatinine clearance: 0.41±0.25 ml/min [CsA] vs. 1.15±0.16 ml/min [CsA+KRP]). Conclusions. The selectivity of KRP-203 for S1P1 reduces the risk of bradycardia, and the combination therapy of KRP-203 with CsA represents a safe and effective strategy for use in renal transplantation.
Bioorganic & Medicinal Chemistry | 2012
Koji Ochiai; Satoshi Takita; Tomohiko Eiraku; Akihiko Kojima; Kazuhiko Iwase; Tetsuya Kishi; Kazunori Fukuchi; Tokutaro Yasue; David R. Adams; Robert W. Allcock; Zhong Jiang; Yasushi Kohno
(-)-6-(7-Methoxy-2-trifluoromethylpyrazolo[1,5-a]pyridin-4-yl)-5-methyl-4,5-dihydro-3-(2H)-pyridazinone (KCA-1490) is a dual PDE3/4 inhibitor that exhibits potent combined bronchodilatory and anti-inflammatory activity. A survey of potential bicyclic heteroaromatic replacement subunits for the pyrazolo[1,5-a]pyridine core of KCA-1490 has identified the 4-methoxy-2-(trifluoromethyl)benzo[d]thiazol-7-yl and 8-methoxy-2-(trifluoromethyl)quinolin-5-yl analogues as dual PDE3/4-inhibitory compounds that potently suppress histamine-induced bronchoconstriction and exhibit anti-inflammatory activity in vivo.
Bioorganic & Medicinal Chemistry Letters | 2013
Koji Ochiai; Satoshi Takita; Akihiko Kojima; Tomohiko Eiraku; Kazuhiko Iwase; Tetsuya Kishi; Akira Ohinata; Yuichi Yageta; Tokutaro Yasue; David R. Adams; Yasushi Kohno
(-)-6-(7-Methoxy-2-(trifluoromethyl)pyrazolo[1,5-a]pyridin-4-yl)-5-methyl-4,5-dihydropyridazin-3(2H)-one (KCA-1490) exhibits moderate dual PDE3/4-inhibitory activity and promises as a combined bronchodilatory/anti-inflammatory agent. N-alkylation of the pyridazinone ring markedly enhances potency against PDE4 but suppresses PDE3 inhibition. Addition of a 6-aryl-4,5-dihydropyridazin-3(2H)-one extension to the N-alkyl group facilitates both enhancement of PDE4-inhibitory activity and restoration of potent PDE3 inhibition. Both dihydropyridazinone rings, in the core and extension, can be replaced by achiral 4,4-dimethylpyrazolone subunits and the core pyrazolopyridine by isosteric bicyclic heteroaromatics. In combination, these modifications afford potent dual PDE3/4 inhibitors that suppress histamine-induced bronchoconstriction in vivo and exhibit promising anti-inflammatory activity via intratracheal administration.
Bioorganic & Medicinal Chemistry Letters | 2011
Koji Ochiai; Naoki Ando; Kazuhiko Iwase; Tetsuya Kishi; Kazunori Fukuchi; Akira Ohinata; Hitomi Zushi; Tokutaro Yasue; David R. Adams; Yasushi Kohno
A structural survey of pyrazolopyridine-pyridazinone phosphodiesterase (PDE) inhibitors was made with a view to optimization of their dual PDE3/4-inhibitory activity for respiratory disease applications. These studies identified (-)-6-(7-methoxy-2-trifluoromethylpyrazolo[1,5-a]pyridine-4-yl)-5-methyl-4,5-dihydro-3-(2H)-pyridazinone (KCA-1490, compound 2ac) as a compound with potent combined bronchodilatory and anti-inflammatory activity and an improved therapeutic window over roflumilast.
Bioorganic & Medicinal Chemistry Letters | 2012
Koji Ochiai; Satoshi Takita; Akihiko Kojima; Tomohiko Eiraku; Naoki Ando; Kazuhiko Iwase; Tetsuya Kishi; Akira Ohinata; Yuichi Yageta; Tokutaro Yasue; David R. Adams; Yasushi Kohno
(-)-6-(7-Methoxy-2-trifluoromethylpyrazolo[1,5-a]pyridin-4-yl)-5-methyl-4,5-dihydro-3-(2H)-pyridazinone (KCA-1490) is a dual PDE3/4 inhibitor that exhibits potent combined bronchodilatory and anti-inflammatory activity. Here we show that a 4,4-dimethylpyrazolone subunit serves as an effective surrogate for the 5-methyl-4,5-dihydropyridazin-3(2H)-one ring of KCA-1490 whilst lacking a stereogenic centre. The 2- and 7-substituents in the pyrazolo[1,5-a]pyridine subunit markedly influence the PDE-inhibitory profile and can be adjusted to afford either potent PDE4-selective inhibitors or dual PDE3/4 inhibitors. A survey of bicyclic heteroaromatic replacements for the pyrazolo[1,5-a]pyridine allowed further refinement of the inhibitory profile and identified 3-(8-methoxy-2-(trifluoromethyl)imidazo[1,2-a]pyridin-5-yl)-4,4-dimethyl-1H-pyrazol-5(4H)-one as an orally active, achiral KCA-1490 analog with well-balanced dual PDE3/4-inhibitory activity.
Bioorganic & Medicinal Chemistry Letters | 2013
Akihiko Kojima; Satoshi Takita; Tatsunobu Sumiya; Koji Ochiai; Kazuhiko Iwase; Tetsuya Kishi; Akira Ohinata; Yuichi Yageta; Tokutaro Yasue; Yasushi Kohno
We previously identified KCA-1490 [(-)-6-(7-methoxy-2-trifluoromethyl-pyrazolo[1,5-a]pyridin-4-yl)-5-methyl-4,5-dihydro-3-(2H)-pyridazinone], a dual PDE3/4 inhibitor. In the present study, we found highly potent selective PDE4 inhibitors derived from the structure of KCA-1490. Among them, N-(3,5-dichloropyridin-4-yl)-7-methoxy-2-(trifluoromethyl)pyrazolo[1,5-a]pyridine-4-carboxamide (2a) had good anti-inflammatory effects in an animal model.
Biochemical and Biophysical Research Communications | 2006
Takashi Kaneko; Takashi Murakami; Harumi Kawana; Masafumi Takahashi; Tokutaro Yasue; Eiji Kobayashi
Biochemical and Biophysical Research Communications | 2007
Ryo Ogawa; Masafumi Takahashi; Sho Ichi Hirose; Hajime Morimoto; Hirohiko Ise; Takashi Murakami; Tokutaro Yasue; Kazuhiko Kuriyama; Minoru Hongo; Eiji Kobayashi; Uichi Ikeda