Tolga Elbir
Dokuz Eylül University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tolga Elbir.
Environment International | 2000
Tolga Elbir; Aysen Muezzinoglu; Abdurrahman Bayram
This article intends to shed a light on air quality in Turkey and compare air pollutant emissions on a national scale with that of the European countries. In order to estimate the quantities of Turkish emissions in the past and their future predictions, a national emission inventory was prepared with respect to five major pollutants consisting of particulate matter(PM), SOx, NOx, non-methane volatile organic compounds, and CO with 5-year intervals between 1985 and 2005. The results suggest that Turkey is a rather large emission source at the European scale, although emission indicators on unit area and per capita were shown to be somewhat smaller in magnitude. Levels of air pollution in some of the big cities in Turkey were also evaluated from available national monitoring data. These evaluations for the urban air qualities covered SO2 and PM parameters between 1986 and 1996, and results were compared with the present Turkish air quality limits, their probable revisions, WHO (Europe) guidelines and related EC directives. Results showed that the air quality limits were not met, especially during the winter periods in Turkish cities. Urban air pollutants characterizing the air in Turkish cities other than SO2 and PM, however, could not have been evaluated as these pollutants were not systematically monitored in these cities.
Atmospheric Pollution Research | 2012
Elife Kaya; Yetkin Dumanoglu; Melik Kara; Hasan Altiok; Abdurrahman Bayram; Tolga Elbir; Mustafa Odabasi
Abstract It was recently suggested that emissions of some persistent organic pollutants (POPs) are decreasing in former use regions due to emission reductions combined with uncontrolled export, at the expense of regions receiving these substances as obsolete products and wastes. Aliaga industrial region in Izmir, Turkey is one of the regions receiving POPs in the form of scrap iron and old ships to be scrapped. Ambient air samples were collected by passive sampling during four seasons in 2009 and 2010 (winter, spring, summer, and fall) at forty different sites in Aliaga to determine the spatial and seasonal variations of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Soil samples were also collected at the air sampling sites during the summer period. Phenanthrene was the most abundant PAH at all sites, and all samples were dominated by low to medium molecular weight PAHs, i.e., fluorene, fluoranthene and pyrene. The spatial distribution of ambient PAH concentrations indicated that the major PAH sources in the region were iron–steel plants, petroleum refinery, and ship dismantling plants. At residential sites, PAH concentrations were higher in winter indicating that wintertime concentrations were mainly affected by residential heating emissions. However, highest atmospheric PCBs concentrations were observed in summer, probably due to increased volatilization from their sources at higher temperatures. Low to medium molecular weight PCBs (tri–, tetra–, penta–CBs) were the most abundant compounds in air for all seasons. Results also indicated that iron–steel plants and ship dismantling facilities were the major PCB emitters in the region. A similar spatial variation was observed for soil PAH and PCB concentrations. Air and soil PAH and PCB concentrations were correlated significantly indicating the interaction of these compartments. Results of the fugacity ratio calculations indicated that local soils generally act as a sink throughout the year for medium to low volatility atmospheric PAHs and PCBs. However, during summer soil becomes a source, especially for volatile PAHs and PCBs.
Environmental Science & Technology | 2015
Mustafa Odabasi; Ezgi Ozgunerge Falay; Gizem Tuna; Hasan Altiok; Melik Kara; Yetkin Dumanoglu; Abdurrahman Bayram; Doğanay Tolunay; Tolga Elbir
Several persistent organic pollutants (POPs) like polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), and polybrominated diphenyl ethers (PBDEs) were measured in needle, branch, bark, and tree ring samples in pine samples collected at 27 sites (21 industrial, 6 background) in Aliaga industrial region in Turkey. Soil, litter, and air samples were also collected to investigate the relationships between the air and soil, litter, and tree components. Concentrations decreased with distance from the sources and the lowest ones were measured at background sites. The spatial distribution of POPs indicated that the major sources in the region are the iron-steel, ship-breaking, petrochemical plants and the petroleum refinery. Significant correlations between the air concentrations and, soil, litter, and tree components indicated the interaction of these compartments with air. Observed increasing trends of POPs in the tree-ring samples were representative for the variations in anthropogenic emissions and resulting atmospheric concentrations in Aliaga region. These results indicated that tree components, litter and soil could be used to determine the spatial variations while tree rings could be used to investigate the historical trends of atmospheric POPs in a region. POP amounts (mg/ha) stored in different tree components, litter, and soil were also inventoried. Among the tree components, generally, the highest amounts were stored in the stem followed by needles. For the overall inventory, the highest amounts were stored in soil for PCNs, PBDEs, and PCBs while highest PAH amounts were stored in trees, indicating that in addition to soil, vegetation is also an important reservoir for POPs.
Science of The Total Environment | 2014
Yagmur Meltem Aydin; Baris Yaman; Husnu Koca; Okan Dasdemir; Melik Kara; Hasan Altiok; Yetkin Dumanoglu; Abdurrahman Bayram; Doğanay Tolunay; Mustafa Odabasi; Tolga Elbir
Normalized biogenic volatile organic compound (BVOC) emission rates for thirty one tree species that cover the 98% of national forested areas in Turkey were determined. Field samplings were performed at fourteen different forested areas in Turkey using a specific dynamic enclosure system. The selected branches of tree species were enclosed in a chamber consisted of a transparent Nalofan bag. The air-flows were sampled from both inlet and outlet of the chamber by Tenax-filled sorbent tubes during photosynthesis of trees under the presence of sunlight. Several environmental parameters (temperature, humidity, photosynthetically active radiation-PAR, and CO2) were continuously monitored inside and outside the enclosure chamber during the samplings. Collected samples were analyzed using a gas chromatography mass spectrometry (GC/MS) system equipped with a thermal desorber (TD). Sixty five BVOCs classified in five major groups (isoprene, monoterpenes, sesquiterpenes, oxygenated sesquiterpenes, and other oxygenated compounds) were analyzed. Emission rates were determined by normalization to standard conditions (1000 μmol/m(2)s PAR and 30 °C temperature for isoprene and 30 °C temperature for the remaining compounds). In agreement with the literature, isoprene was mostly emitted by broad-leaved trees while coniferous species mainly emitted monoterpenes. Several tree species such as Sweet Chestnut, Silver Lime, and European Alder had higher monoterpene emissions although they are broad-leaved species. High isoprene emissions were also observed for a few coniferous species such as Nordmann Fir and Oriental Spruce. The highest normalized total BVOC emission rate of 27.1 μg/gh was observed for Oriental Plane while South European Flowering Ash was the weakest BVOC emitter with a total normalized emission rate of 0.031 μg/gh. Monoterpene emissions of broad-leaved species mainly consisted of sabinene, limonene and trans-beta-ocimene, while alpha-pinene, beta-pinene and beta-myrcene were generally emitted by coniferous species. Oxygenated compounds were the third most prominent BVOC group and sesquiterpenes had slightly lower contributions.
International Journal of Environment and Pollution | 2002
Tolga Elbir
A Gaussian atmospheric dispersion model, Industrial Source Complex Short Term (ISCST3), was used to estimate ground-level concentrations of sulphur dioxide (SO2) emitted from source categories of industrial and domestic heating in the city of Izmir, Turkey. Predictions were estimated for the year 2000 across a study area of 80 km x 100 km. Statistical analyses were carried out to evaluate the model performance by comparing predicted and observed SO2 concentrations at four ambient air quality monitoring stations using two main methods root mean square error (RMSE) and an index of agreement (d). The results showed that industry was found as the most air-polluting sector and industries located at outside of the metropolitan area were found to carry important risks for urban air quality. The most polluted area was found at a distance of about 1 km from a major petroleum refinery and a large petrochemical industry.
Environmental Monitoring and Assessment | 2014
Melik Kara; Yetkin Dumanoglu; Hasan Altiok; Tolga Elbir; Mustafa Odabasi; Abdurrahman Bayram
Topsoil samples (n = 40) were collected from a heavily industrialized region in Turkey. The region includes several scrap processing iron–steel plants with electric arc furnaces (EAFs), a petroleum refinery, a petrochemical complex, steel rolling mills, a natural gas-fired power plant, ship-breaking yards and very dense transportation activities. The region has undergone a rapid transition from an agricultural region to a heavily industrialized region in the last three decades. Collected soil samples were analyzed for 48 trace elements using inductively coupled plasma-mass spectrometry (ICP-MS). The elemental distribution pattern in the region indicated that Nemrut area with dense iron–steel production activities was a hotspot for elemental pollution. In addition to crustal elements, concentrations of anthropogenic trace elements (i.e., Fe, Zn, Pb, Mn, Cu, Cd, Cr and Mo) were very high in the area influencing many parts of the region. Elemental compositions of fugitive sources polluting the soil (i.e., paved and unpaved roads, slag piles, EAFs filter dust piles and coal piles) were also determined. The methods (enrichment factors [EFs] and the index of geoaccumulation [Igeo]) used for determination of pollution status of soil showed that Cr, Ag, Zn, As and Pb were the strongly contaminating elements for the region. Principal component analysis (PCA) clearly indicated that anthropogenic sources (steel production, refinery and petrochemical processes and traffic) were important sources in this region.
Science of The Total Environment | 2016
Mustafa Odabasi; Doğanay Tolunay; Melik Kara; Ezgi Ozgunerge Falay; Gizem Tuna; Hasan Altiok; Yetkin Dumanoglu; Abdurrahman Bayram; Tolga Elbir
Several trace and macro elements (n=48) were measured in pine needle, branch, bark, tree ring, litter, and soil samples collected at 27 sites (21 industrial, 6 background) to investigate their spatial and historical variation in Aliaga industrial region in Turkey. Concentrations generally decreased with distance from the sources and the lowest ones were measured at background sites far from major sources. Spatial distribution of anthropogenic trace elements indicated that their major sources in the region are the iron-steel plants, ship-breaking activities and the petroleum refinery. Patterns of 40 elements that were detected in most of the samples were also evaluated to assess their suitability for investigation of historical variations. Observed increasing trends of several trace and macro elements (As, Cr, Fe, Mo, Ni, V, Cu, Pb, Sb, Sn, and Hg) in the tree-ring samples were representative for the variations in anthropogenic emissions and resulting atmospheric concentrations in Aliaga region. It was shown that lanthanides (La, Ce, Pr, Nd, Sm, Gd, Dy, Er, Yb) could also be used for the investigation of historical variations due to specific industrial emissions (i.e., petroleum refining). Results of the present study showed that tree components, litter, and soil could be used to determine the spatial variations of atmospheric pollution in a region while tree rings could be used to assess the historical variations.
Environmental Earth Sciences | 2015
Melik Kara; Yetkin Dumanoglu; Hasan Altiok; Tolga Elbir; Mustafa Odabasi; Abdurrahman Bayram
Surface seawater and coastal sediment samples were collected concurrently at 22 sampling sites during two sampling periods in the Aliaga industrial region, Turkey. In the study area there are two major bays, with many ports belonging to a petrochemical plant, a petroleum refinery, scrap steel production plants, and a fertilizer plant. Samples were analyzed for 48 trace elements using an ICP-MS system. The concentrations of P, Al, Zn, Fe, Se, Mo, and Ba were found to be higher than those of the other elements in the seawater samples but with no significant spatial and temporal variations. Similarly, concentrations of Al, Ba, Ca, Fe, K, Mg, Mn, Na, P, Sr, and Zn were high in sediment samples from almost all sampling sites. The concentrations of the elements Pb, Cd, Cr, Cu, Co, Sn, Mo, Ni, and Hg showed significant spatial variations due to different distances from industrial facilities. In order to determine the contribution of anthropogenic sources in sediment samples, the levels of pollution were evaluated using pollution indicators, enrichment factors and index of geoaccumulation. The effects on aquatic environments were also determined in accordance with the sediment quality guidelines. Principal component analysis was also employed to find out the factors affecting the elemental composition of the sediments. Principal component analysis indicated that the possible sources in the region were iron-steel production, refinery and petrochemical processes, ship breaking facilities, seawater, crustal sources and re-suspended dust.
Water Air and Soil Pollution | 2003
Faruk Dincer; Aysen Muezzinoglu; Tolga Elbir
Daily average SO2 concentrations were measured during August 1999–September 2000 period in the mountains around Izmir. Sampling devices to collect integrated daily SO2 samples were located at four different sites. These sites were Yamanlar Mountain in the north, Tekketepe height of Karabelen Mountain in the south, and two mountain villages (Kiziluzum and Bespinar) located east of Izmir. Samples were analyzed by using standard methods. Maximum daily SO2 concentrations up to 433 μg m-3 were found with the average values ranging between 75–135 μg m-3 per day at the four mountain stations. Annual mean values were above the threshold levels acceptable for the health of trees. It is concluded that such high SO2 pollution might have caused the noted decline in the forests.In order to decide the sources of such high levels of pollution on the forested mountains, trajectory analyses were carried out. Results obtained at Tekketepe station are given in this article and they point to the fractional contributions of dense industrial areas around Izmir, to the forested heights of Tekketepe. Local topography and location of industrial zones around the city are seen to have a strong effect on the deteriorated air quality over the mountains. The annual and seasonal averages and ten maximum daily measurements at the Tekketepe sampling site indicate that the highest contribution to the deterioration of air quality is associated with the northerly wind sectors.
Water, Air, & Soil Pollution: Focus | 2003
Aysen Muezzinoglu; Tolga Elbir; Abdurrahman Bayram
As a first step to work out an abatement plan against air pollution, a local emission inventory with 1 hr temporal and 1 km spatial resolution in the city of Izmir and its surroundings was prepared. The study area consisted of a 200 × 170 km2 rectangle having the city of Izmir at the centre. The studied pollutants were total particulate matter (PM), sulfur oxides (SOx), nitrogen oxides (NOx), volatile organic compounds (VOC) and carbon monoxide (CO). Emissions of these pollutants were determined by estimation methods making use of suitable emission factors. Emission sources were evaluated in three categories; point, area and line sources. For year 2000 total emissions in the study area on an average day were estimated as 173 tons PM, 299 tons SOx, 136 tons NOx, 68 tons VOC and 320 tons CO. At the second part of the study, calculated emissions were transformed into air quality predictions in the area by using the Industrial Source Complex – Short Term (ISCST3) dispersion model. Model results were tested with monitoring data from urban air quality stations obtained during the year 2000. Results of the past, present and future air quality estimates in the region were discussed. In order to do so, future scenarios including various control technology applications were formulated and tested to see their effect on the future air quality.