Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tom Boone is active.

Publication


Featured researches published by Tom Boone.


Nature Immunology | 2000

APRIL and TALL-1 and receptors BCMA and TACI: system for regulating humoralimmunity

Gang Yu; Tom Boone; John M. Delaney; Nessa Hawkins; Michael Kelley; Meena Ramakrishnan; Susan McCabe; Wanrong Qiu; Masayo Kornuc; Xing-Zhong Xia; Jane Guo; Marina Stolina; William J. Boyle; Ildiko Sarosi; Hailing Hsu; Giorgio Senaldi; Lars Eyde Theill

We report that the tumor neurosis factor homolog APRIL (a proliferation-inducing ligand) stimulates in vitro proliferation of primary B and T cells and increases spleen weight due to accumulation of B cells in vivo. APRIL functions via binding to BCMA (B cell maturation antigen) and TACI (transmembrane activator and CAML-interactor) and competes with TALL-1 (also called BLyS or BAFF) for receptor binding. Soluble BCMA and TACI specifically prevent binding of APRIL and block APRIL-stimulated proliferation of primary B cells. BCMA-Fc also inhibits production of antibodies against keyhole limpet hemocyanin and Pneumovax in mice, indicating that APRIL and/or TALL-1 signaling via BCMA and/or TACI are required for generation of humoral immunity. Thus, APRIL–TALL-1 and BCMA-TACI form a two ligands–two receptors pathway involved in stimulation of B and T cell function.


Nature Medicine | 2000

Modulation of T-cell-mediated immunity in tumor and graft-versus-host disease models through the LIGHT co-stimulatory pathway.

Koji Tamada; Koji Shimozaki; Andrei I. Chapoval; Gefeng Zhu; Gabriel L. Sica; Dallas B. Flies; Tom Boone; Hailing Hsu; Yang-Xin Fu; Shigekazu Nagata; Jian Ni; Lieping Chen

LIGHT was recently described as a member of the tumor necrosis factor (TNF) ‘superfamily’. We have isolated a mouse homolog of human LIGHT and investigated its immunoregulatory functions in vitro and in vivo. LIGHT has potent, CD28-independent co-stimulatory activity leading to T-cell growth and secretion of gamma interferon and granulocyte–macrophage colony-stimulating factor. Gene transfer of LIGHT induced an antigen-specific cytolytic T-cell response and therapeutic immunity against established mouse P815 tumor. In contrast, blockade of LIGHT by administration of soluble receptor or antibody led to decreased cell-mediated immunity and ameliorated graft-versus-host disease. Our studies identify a previously unknown T-cell co-stimulatory pathway as a potential therapeutic target.


Molecular Cancer Therapeutics | 2010

Context-Dependent Role of Angiopoietin-1 Inhibition in the Suppression of Angiogenesis and Tumor Growth: Implications for AMG 386, an Angiopoietin-1/2–Neutralizing Peptibody

Angela Coxon; James Bready; Hosung Min; Stephen Kaufman; Juan Leal; Dongyin Yu; Tani Ann Lee; Ji-Rong Sun; Juan Estrada; Brad Bolon; James McCabe; Ling Wang; Karen Rex; Sean Caenepeel; Paul E. Hughes; David Cordover; Haejin Kim; Seog Joon Han; Mark Leo Michaels; Eric Hsu; Grant Shimamoto; Russell C. Cattley; Eunju Hurh; Linh T. Nguyen; Shao Xiong Wang; Anthony Ndifor; Isaac J. Hayward; Beverly L. Falcon; Donald M. McDonald; Luke Li

AMG 386 is an investigational first-in-class peptide-Fc fusion protein (peptibody) that inhibits angiogenesis by preventing the interaction of angiopoietin-1 (Ang1) and Ang2 with their receptor, Tie2. Although the therapeutic value of blocking Ang2 has been shown in several models of tumorigenesis and angiogenesis, the potential benefit of Ang1 antagonism is less clear. To investigate the consequences of Ang1 neutralization, we have developed potent and selective peptibodies that inhibit the interaction between Ang1 and its receptor, Tie2. Although selective Ang1 antagonism has no independent effect in models of angiogenesis-associated diseases (cancer and diabetic retinopathy), it induces ovarian atrophy in normal juvenile rats and inhibits ovarian follicular angiogenesis in a hormone-induced ovulation model. Surprisingly, the activity of Ang1 inhibitors seems to be unmasked in some disease models when combined with Ang2 inhibitors, even in the context of concurrent vascular endothelial growth factor inhibition. Dual inhibition of Ang1 and Ang2 using AMG 386 or a combination of Ang1- and Ang2-selective peptibodies cooperatively suppresses tumor xenograft growth and ovarian follicular angiogenesis; however, Ang1 inhibition fails to augment the suppressive effect of Ang2 inhibition on tumor endothelial cell proliferation, corneal angiogenesis, and oxygen-induced retinal angiogenesis. In no case was Ang1 inhibition shown to (a) confer superior activity to Ang2 inhibition or dual Ang1/2 inhibition or (b) antagonize the efficacy of Ang2 inhibition. These results imply that Ang1 plays a context-dependent role in promoting postnatal angiogenesis and that dual Ang1/2 inhibition is superior to selective Ang2 inhibition for suppression of angiogenesis in some postnatal settings. Mol Cancer Ther; 9(10); 2641–51. ©2010 AACR.


Journal of Immunology | 2001

IL-18-Binding Protein Protects Against Lipopolysaccharide- Induced Lethality and Prevents the Development of Fas/Fas Ligand-Mediated Models of Liver Disease in Mice

Raffaella Faggioni; Russell C. Cattley; Jane Guo; Silvia Flores; Heather Brown; Meiying Qi; Songmei Yin; David C. Hill; Sheila Scully; Ching Chen; David Brankow; Jeffrey Lewis; Claudia Baikalov; Harvey Yamane; Tina Meng; Frank Martin; Sylvia Hu; Tom Boone; Giorgio Senaldi

IL-18-binding protein (IL-18BP) is a natural IL-18 inhibitor. Human IL-18BP isoform a was produced as fusion construct with human IgG1 Fc and assessed for binding and neutralizing IL-18. IL-18BP-Fc binds human, mouse, and rat IL-18 with high affinity (KD 0.3–5 nM) in a BIAcore-based assay. In vitro, IL-18BP-Fc blocks IL-18 (100 ng/ml)-induced IFN-γ production by KG1 cells (EC50 = 0.3 μg/ml). In mice challenged with an LD90 of LPS (15 mg/kg), IL-18BP-Fc (5 mg/kg) administered 10 min before LPS blocks IFN-γ production and protects against lethality. IL-18BP-Fc administered 10 min before LPS blocks IFN-γ production induced by LPS (5 mg/kg) with ED50 of 0.005 mg/kg. Furthermore, IL-18BP-Fc (5 mg/kg) abrogates LPS (5 mg/kg)-induced IFN-γ production even when administered 6 days before LPS but shows no effect when administered 9 or 12 days before LPS. Given 10 min before LPS challenge to mice primed 12 days in advance with heat-killed Propionibacterium acnes, IL-18BP-Fc prevents LPS-induced liver damage and IFN-γ and Fas ligand expression. Given at the moment of priming with P. acnes, IL-18BP-Fc decreases P. acnes-induced granuloma formation, macrophage-inflammatory protein-1α and macrophage-inflammatory protein-2 production and prevents sensitization to LPS. IL-18BP-Fc also prevents Con A-induced liver damage and IFN-γ and Fas ligand expression as well as liver damage induced by Pseudomonas aeruginosa exotoxin A or by anti-Fas agonistic Ab. In conclusion, IL-18BP can be engineered and produced in recombinant form to generate an IL-18 inhibitor, IL-18BP-Fc, endowed with remarkable in vitro and in vivo properties of binding and neutralizing IL-18.


Journal of Biological Chemistry | 1997

Molecular Cloning and Functional Characterization of a Novel CC Chemokine, Stimulated T Cell Chemotactic Protein (STCP-1) That Specifically Acts on Activated T Lymphocytes

Ming Shi Chang; Jennifer McNinch; Chet Elias; Carl L. Manthey; David Grosshans; Tina Meng; Tom Boone; David P. Andrew

A novel human chemokine STCP-1 (stimulated T cell chemotactic protein) was isolated from an activated macrophage cDNA library. The chemokine has four cysteines positioned in a manner that identifies STCP-1 as a member of the CC chemokine family. The amino acid sequence shows 34% identity with RANTES. The gene consists of 3 exons and 2 introns with the position of intron/exon boundaries similar to that of RANTES. The gene is expressed as a 3.4-kilobase transcript on lymph node, thymus, and Appendix. STCP-1 induces Ca2+ mobilization in a small percentage of primary activated T lymphocytes, but on repeated stimulation the percentage of T lymphocytes that respond to STCP-1 increases. The chemokine STCP-1 does not induce Ca2+ mobilization in monocytes, dendritic cells, neutrophils, eosinophils, lipopolysaccharide-activated B lymphocytes, and freshly isolated resting T lymphocytes. Similarly, STCP-1, while acting as a mild chemoattractant for primary activated T lymphocytes, is a potent chemoattractant for chronically activated T lymphocytes but has no chemoattractant activity for monocytes, neutrophils, eosinophils, and resting T lymphocytes. As STCP-1 acts specifically on activated T lymphocytes, it may play a role in the trafficking of activated/effector T lymphocytes to inflammatory sites and other aspects of activated T lymphocyte physiology.


Journal of Pharmacology and Experimental Therapeutics | 2009

Fully Human Monoclonal Antibodies Antagonizing the Glucagon Receptor Improve Glucose Homeostasis in Mice and Monkeys

Hai Yan; Wei Gu; Jie Yang; Vivian Bi; Yuqing Shen; Eunkyung Lee; Katherine Ann Winters; Renee Komorowski; Cheng Zhang; Jennifer Patel; Dorothy Caughey; Gary Elliott; Yvonne Y. Lau; Jin Wang; Yue-Sheng Li; Tom Boone; Richard Lindberg; Sylvia Hu; Murielle M. Véniant

Antagonizing the glucagon signaling pathway represents an attractive therapeutic approach for reducing excess hepatic glucose production in patients with type 2 diabetes. Despite extensive efforts, there is currently no human therapeutic that directly inhibits the glucagon/glucagon receptor pathway. We undertook a novel approach by generating high-affinity human monoclonal antibodies (mAbs) to the human glucagon receptor (GCGR) that display potent antagonistic activity in vitro and in vivo. A single injection of a lead antibody, mAb B, at 3 mg/kg, normalized blood glucose levels in ob/ob mice for 8 days. In addition, a single injection of mAb B dose-dependently lowered fasting blood glucose levels without inducing hypoglycemia and improved glucose tolerance in normal C57BL/6 mice. In normal cynomolgus monkeys, a single injection improved glucose tolerance while increasing glucagon and active glucagon-like peptide-1 levels. Thus, the anti-GCGR mAb could represent an effective new therapeutic for the treatment of type 2 diabetes.


Journal of Pharmacology and Experimental Therapeutics | 2009

Long-Term Inhibition of the Glucagon Receptor with a Monoclonal Antibody in Mice Causes Sustained Improvement in Glycemic Control, with Reversible α-Cell Hyperplasia and Hyperglucagonemia

Wei Gu; Hai Yan; Katherine Ann Winters; Renee Komorowski; Steven Vonderfecht; Larissa Atangan; Glenn Sivits; David R. Hill; Jie Yang; Vivian Bi; Yuqing Shen; Sylvia Hu; Tom Boone; Richard Lindberg; Murielle M. Véniant

Uncontrolled hepatic glucose output (HGO) contributes significantly to the pathological hyperglycemic state of patients with type 2 diabetes. Glucagon, through action on its receptor, stimulates HGO, thereby leading to increased glycemia. Antagonizing the glucagon signaling pathway represents an attractive therapeutic approach for the treatment of type 2 diabetes. We previously reported the generation and characterization of several high-affinity monoclonal antibodies (mAbs) targeting the glucagon receptor (GCGR). In the present study, we demonstrate that a 5-week treatment of diet-induced obese mice with mAb effectively normalized nonfasting blood glucose. Similar treatment also reduced fasting blood glucose without inducing hypoglycemia or other undesirable metabolic perturbations. In addition, no hypoglycemia was found in db/db mice that were treated with a combination of insulin and mAb. Long-term treatment with the mAb caused dose-dependent hyperglucagonemia and minimal to mild α-cell hyperplasia in lean mice. There was no evidence of pancreatic α-cell neoplastic transformation in mice treated with mAb for as long as 18 weeks. Treatment-induced hyperglucagonemia and α-cell hyperplasia were reversible after treatment withdrawal for periods of 4 and 10 weeks, respectively. It is noteworthy that pancreatic β-cell function was preserved, as demonstrated by improved glucose tolerance throughout the 18-week treatment period. Our studies further support the concept that long-term inhibition of GCGR signaling by a mAb could be an effective approach for controlling diabetic hyperglycemia.


Journal of Immunology | 2002

Essential Role of NF-κB-Inducing Kinase in T Cell Activation Through the TCR/CD3 Pathway

Mitsuru Matsumoto; Takuji Yamada; Steven Kiyoshi Yoshinaga; Tom Boone; Tom Horan; Shigeru Fujita; Yi Li; Tasuku Mitani

NF-κB-inducing kinase (NIK) is involved in lymphoid organogenesis in mice through lymphotoxin-β receptor signaling. To clarify the roles of NIK in T cell activation through TCR/CD3 and costimulation pathways, we have studied the function of T cells from aly mice, a strain with mutant NIK. NIK mutant T cells showed impaired proliferation and IL-2 production in response to anti-CD3 stimulation, and these effects were caused by impaired NF-κB activity in both mature and immature T cells; the impaired NF-κB activity in mature T cells was also associated with the failure of maintenance of activated NF-κB. In contrast, responses to costimulatory signals were largely retained in aly mice, suggesting that NIK is not uniquely coupled to the costimulatory pathways. When NIK mutant T cells were stimulated in the presence of a protein kinase C (PKC) inhibitor, proliferative responses were abrogated more severely than in control mice, suggesting that both NIK and PKC control T cell activation in a cooperative manner. We also demonstrated that NIK and PKC are involved in distinct NF-κB activation pathways downstream of TCR/CD3. These results suggest critical roles for NIK in setting the threshold for T cell activation, and partly account for the immunodeficiency in aly mice.


Nature Structural & Molecular Biology | 2000

Flt3 ligand structure and unexpected commonalities of helical bundles and cystine knots.

Savvas N. Savvides; Tom Boone; P. Andrew Karplus

Human Flt3 ligand (Flt3L) stimulates early hematopoiesis by activating a type III tyrosine kinase receptor on primitive bone marrow stem cells. The crystal structure of soluble Flt3L reveals that it is a homodimer of two short chain alpha-helical bundles. Comparisons of structure-function relationships of Flt3L with the homologous hematopoietic cytokines macrophage colony stimulating factor (MCSF) and stem cell factor (SCF) suggest that they have a common receptor binding mode that is distinct from the paradigm derived from the complex of growth hormone with its receptor. Furthermore, we identify recognition features common to all helical and cystine-knot protein ligands that activate type III tyrosine kinase receptors, and the closely related type V tyrosine kinase receptors.


mAbs | 2012

Peptibodies: A flexible alternative format to antibodies.

Grant Shimamoto; Colin V. Gegg; Tom Boone; Christophe Quéva

Peptibodies or peptide-Fc fusions are an attractive alternative therapeutic format to monoclonal antibodies. They consist of biologically active peptides grafted onto an Fc domain. This approach retains certain desirable features of antibodies, notably an increased apparent affinity through the avidity conferred by the dimerization of two Fcs and a long plasma residency time. Peptibodies can be made in E. coli using recombinant technology. The manufacturing process involves fermentation and downstream processing, including refolding and multiple column chromatographic steps, that result in overall yields and quality suitable for commercial development. Romiplostim, marketed under the brand name Nplate®, is the first peptibody to be approved by the United States Food and Drug Administration and the European Medicines Agency and is indicated for the treatment of immune thrombocytopenic purpura. AMG 386, a peptibody antagonist to angiopoietins 1 and 2, is being evaluated in Phase 3 clinical testing in combination with chemotherapy in women with ovarian cancer. AMG 819, a peptibody targeting nerve growth factor for pain has also progressed to clinical trials. These peptibodies illustrate the versatility of the modality.

Collaboration


Dive into the Tom Boone's collaboration.

Researchain Logo
Decentralizing Knowledge