Tom Brereton
Butterfly Conservation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tom Brereton.
Nature Climate Change | 2012
Vincent Devictor; Chris van Swaay; Tom Brereton; Lluı´s Brotons; Dan E. Chamberlain; Janne Heliölä; Sergi Herrando; Romain Julliard; Mikko Kuussaari; Åke Lindström; Jiří Reif; David B. Roy; Oliver Schweiger; Josef Settele; Constantí Stefanescu; Arco J. van Strien; Chris Van Turnhout; Zdeněk Vermouzek; Michiel F. WallisDeVries; Irma Wynhoff; Frédéric Jiguet
Climate changes have profound effects on the distribution of numerous plant and animal species(1-3). However, whether and how different taxonomic groups are able to track climate changes at large spatial scales is still unclear. Here, we measure and compare the climatic debt accumulated by bird and butterfly communities at a European scale over two decades (1990-2008). We quantified the yearly change in community composition in response to climate change for 9,490 bird and 2,130 butterfly communities distributed across Europe(4). We show that changes in community composition are rapid but different between birds and butterflies and equivalent to a 37 and 114 km northward shift in bird and butterfly communities, respectively. We further found that, during the same period, the northward shift in temperature in Europe was even faster, so that the climatic debts of birds and butterflies correspond to a 212 and 135 km lag behind climate. Our results indicate both that birds and butterflies do not keep up with temperature increase and the accumulation of different climatic debts for these groups at national and continental scales.
Nature | 2016
Stephen J. Thackeray; Peter A. Henrys; Deborah Hemming; James R. Bell; Marc S. Botham; Sarah Burthe; Pierre Helaouët; David G. Johns; Ian D. Jones; David I. Leech; Eleanor B. Mackay; Dario Massimino; Sian Atkinson; P. J. Bacon; Tom Brereton; Laurence Carvalho; T. H. Clutton-Brock; Callan Duck; Martin Edwards; J. Malcolm Elliott; Stephen J. G. Hall; R. Harrington; James W. Pearce-Higgins; Toke T. Høye; Loeske E. B. Kruuk; Josephine M. Pemberton; Tim Sparks; Paul M. Thompson; Ian R. White; Ian J. Winfield
Differences in phenological responses to climate change among species can desynchronise ecological interactions and thereby threaten ecosystem function. To assess these threats, we must quantify the relative impact of climate change on species at different trophic levels. Here, we apply a Climate Sensitivity Profile approach to 10,003 terrestrial and aquatic phenological data sets, spatially matched to temperature and precipitation data, to quantify variation in climate sensitivity. The direction, magnitude and timing of climate sensitivity varied markedly among organisms within taxonomic and trophic groups. Despite this variability, we detected systematic variation in the direction and magnitude of phenological climate sensitivity. Secondary consumers showed consistently lower climate sensitivity than other groups. We used mid-century climate change projections to estimate that the timing of phenological events could change more for primary consumers than for species in other trophic levels (6.2 versus 2.5–2.9 days earlier on average), with substantial taxonomic variation (1.1–14.8 days earlier on average).
Journal of Insect Conservation | 2011
Tom Brereton; David B. Roy; I. Middlebrook; Marc S. Botham; Martin Warren
The United Kingdom (UK) Government has national and international commitments to tackle the rate of biodiversity loss by 2010. Biodiversity indicators are used to measure and communicate progress in meeting these commitments. From 2005 onwards, butterflies have been adopted as Governmental biodiversity indicators in England, Scotland and for the UK as a whole. The indicators are compiled using butterfly abundance data collected through the UK Butterfly Monitoring Scheme, at a network of site established from 1976 onwards. The indicators show that butterfly numbers have fluctuated considerably from year-to-year, though analysis of the underlying smoothed multi-species trends for (habitat) ‘specialist’ species show significant long-term declines in each country since the 1970s. Trends in wider countryside ‘generalist’ species vary at the country-level from little or no overall change in Scotland and across the UK, to declines over selected years in England. Comparisons of changes in butterfly abundance before and after the 2010 target was set in 2002 suggest that the rate of decline at the UK-level is increasing for specialist species. In spite of large amounts of investment since 2000 to improve the habitat condition of protected areas, the trend for butterfly populations is no different in protected areas compared to elsewhere. Analysis by policy sector in England, shows that butterflies are declining rapidly in both forestry land and farmland, although in the latter habitat type, improvements are being seen on land entered into agri-environment schemes. We conclude by assessing the extent to which butterflies may represent broader biodiversity and help inform and evaluate conservation policy.
Insect Conservation and Diversity | 2011
Richard Fox; Martin Warren; Tom Brereton; David B. Roy; Anna Robinson
1. Over the last century butterflies have undergone substantial changes in abundance and range in Great Britain and monitoring has improved markedly. These changes, together with a major revision of International Union for Conservation of Nature (IUCN) criteria, render previous Red List assessments outdated.
Biology Letters | 2012
Andrew J. Suggitt; Constantí Stefanescu; Ferran Páramo; Tom H. Oliver; Barbara J. Anderson; Jane K. Hill; David B. Roy; Tom Brereton; Chris D. Thomas
Different vegetation types can generate variation in microclimates at local scales, potentially buffering species from adverse climates. To determine if species could respond to such microclimates under climatic warming, we evaluated whether ectothermic species (butterflies) can exploit favourable microclimates and alter their use of different habitats in response to year-to-year variation in climate. In both relatively cold (Britain) and warm (Catalonia) regions of their geographical ranges, most species shifted into cooler, closed habitats (e.g. woodland) in hot years, and into warmer, open habitats (e.g. grassland) in cooler years. Additionally, three-quarters of species occurred in closed habitats more frequently in the warm region than in the cool region. Thus, species shift their local distributions and alter their habitat associations to exploit favourable microclimates, although the magnitude of the shift (approx. 1.3% of individuals from open to shade, per degree Celsius) is unlikely to buffer species from impacts of regional climate warming.
EEA Technical Reports; 11/2013 (2013) | 2013
Chris van Swaay; Arco J. van Strien; Alexander Harpke; Benoit Fontaine; Constantí Stefanescu; David B. Roy; Elisabeth Kühn; Erki Õnuao; Eugenie C. Regan; Giedrius Švitra; Igor Prokofev; Janne Heliölä; Josef Settele; Lars Pettersson; Marc S. Botham; Martin Musche; Nicolas Titeux; Nina Cornish; Patrick Leopold; Romain Juillard; Rudi Verovnik; Sandra Öberg; Sergey Popov; Sue Collins; Svetlana Goloschchapova; Tobias Roth; Tom Brereton; Martin Warren
This report presents the European Grassland Butterfly Indicator, based on national Butterfly Monitoring Schemes (BMS) in 19 countries across Europe, most of them in the European Union. The indicator shows that since 1990 till 2011 butterfly populations have declined by almost 50 %, indicating a dramatic loss of grassland biodiversity. This also means the situation has not improved since the first version of the indicator published in 2005. Of the 17 species, 8 have declined in Europe, 2 have remained stable and 1 increased. For six species the trend is uncertain. The main driver behind the decline of grassland butterflies is the change in rural land use: agricultural intensification where the land is relatively flat and easy to cultivate, and abandonment in mountains and wet areas, mainly in eastern and southern Europe. Agricultural intensification leads to uniform, almost sterile grasslands for biodiversity. Grassland butterflies thus mainly survive in traditionally farmed low‑input systems (High Nature Value (HNV) Farmland) as well as nature reserves, and on marginal land such as road verges and amenity areas. (Less)
Journal of Applied Ecology | 2015
Michael J. O. Pocock; Stuart E. Newson; Ian G. Henderson; Jodey Peyton; William J. Sutherland; David G. Noble; Stuart G. Ball; Björn C. Beckmann; Jeremy Biggs; Tom Brereton; David J. Bullock; Stephen T. Buckland; Mike Edwards; Mark A. Eaton; Martin Harvey; M. O. Hill; Martin Horlock; David S. Hubble; Angela M. Julian; Edward C. Mackey; Darren J. Mann; Matthew J. Marshall; Jolyon M. Medlock; Elaine O'mahony; Marina Pacheco; Keith Porter; Steve Prentice; Deborah A. Procter; Helen E. Roy; Sue E. Southway
Summary Biodiversity is changing at unprecedented rates, and it is increasingly important that these changes are quantified through monitoring programmes. Previous recommendations for developing or enhancing these programmes focus either on the end goals, that is the intended use of the data, or on how these goals are achieved, for example through volunteer involvement in citizen science, but not both. These recommendations are rarely prioritized. We used a collaborative approach, involving 52 experts in biodiversity monitoring in the UK, to develop a list of attributes of relevance to any biodiversity monitoring programme and to order these attributes by their priority. We also ranked the attributes according to their importance in monitoring biodiversity in the UK. Experts involved included data users, funders, programme organizers and participants in data collection. They covered expertise in a wide range of taxa. We developed a final list of 25 attributes of biodiversity monitoring schemes, ordered from the most elemental (those essential for monitoring schemes; e.g. articulate the objectives and gain sufficient participants) to the most aspirational (e.g. electronic data capture in the field, reporting change annually). This ordered list is a practical framework which can be used to support the development of monitoring programmes. Peoples ranking of attributes revealed a difference between those who considered attributes with benefits to end users to be most important (e.g. people from governmental organizations) and those who considered attributes with greatest benefit to participants to be most important (e.g. people involved with volunteer biological recording schemes). This reveals a distinction between focussing on aims and the pragmatism in achieving those aims. Synthesis and applications. The ordered list of attributes developed in this study will assist in prioritizing resources to develop biodiversity monitoring programmes (including citizen science). The potential conflict between end users of data and participants in data collection that we discovered should be addressed by involving the diversity of stakeholders at all stages of programme development. This will maximize the chance of successfully achieving the goals of biodiversity monitoring programmes.
PLOS ONE | 2014
Catherine M. McClellan; Tom Brereton; Florence Dell'Amico; David G. Johns; Anna-C. Cucknell; Samantha C. Patrick; Rod Penrose; Vincent Ridoux; Jean-Luc Solandt; Eric Stephan; Stephen C. Votier; Ruth Williams; Brendan J. Godley
The temperate waters of the North-Eastern Atlantic have a long history of maritime resource richness and, as a result, the European Union is endeavouring to maintain regional productivity and biodiversity. At the intersection of these aims lies potential conflict, signalling the need for integrated, cross-border management approaches. This paper focuses on the marine megafauna of the region. This guild of consumers was formerly abundant, but is now depleted and protected under various national and international legislative structures. We present a meta-analysis of available megafauna datasets using presence-only distribution models to characterise suitable habitat and identify spatially-important regions within the English Channel and southern bight of the North Sea. The integration of studies from dedicated and opportunistic observer programmes in the United Kingdom and France provide a valuable perspective on the spatial and seasonal distribution of various taxonomic groups, including large pelagic fishes and sharks, marine mammals, seabirds and marine turtles. The Western English Channel emerged as a hotspot of biodiversity for megafauna, while species richness was low in the Eastern English Channel. Spatial conservation planning is complicated by the highly mobile nature of marine megafauna, however they are important components of the marine environment and understanding their distribution is a first crucial step toward their inclusion into marine ecosystem management.
Journal of Applied Ecology | 2015
Robin J. Curtis; Tom Brereton; Roger L. H. Dennis; Chris Carbone; Nick J. B. Isaac
1. Understanding the drivers of population abundance across species and sites is crucial for effective conservation management. At present, we lack a framework for predicting which sites are likely to support abundant butterfly communities. 2. We address this problem by exploring the determinants of abundance among 1111 populations of butterflies in the UK, spanning 27 species on 54 sites. Our general hypothesis is that the availability of food resources is a strong predictor of population abundance both within and between species, but that the relationship varies systematically with species’ traits. 3. We found strong positive correlations between butterfly abundance and the availability of food resources. Our indices of host plant and nectar are both significant predictors of butterfly population density, but the relationship is strongest for host plants, which explain up to 36% of the inter-site variance in abundance for some species. 4. Among species, the host plant–abundance relationship is mediated by butterfly species traits. It is strongest among those species with narrow diet breadths, low mobility and habitat specialists. Abundance for species with generalist diet and habitat associations is uncorrelated with our host plant index. 5. The host plant–abundance relationship is more pronounced on sites with predominantly north-facing slopes, suggesting a role for microclimate in mediating resource availability. 6. Synthesis and applications. We have shown that simple measures can be used to help understand patterns in abundance at large spatial scales. For some butterfly species, population carrying capacity on occupied sites is predictable from information about the vegetation composition. These results suggest that targeted management to increase host plant availability will translate into higher carrying capacity. Among UK butterflies, the species that would benefit most from such intervention have recently experienced steep declines in both abundance and distribution. The host plant–abundance relationship we have identified is likely to be transferrable to other systems characterized by strong interspecific interactions across trophic levels. This raises the possibility that the quality of habitat patches for specialist species is estimable from rapid assessment of the host plant resource.
Global Change Biology | 2012
Tom H. Oliver; Chris D. Thomas; Jane K. Hill; Tom Brereton; David B. Roy
Climate warming threatens the survival of species at their warm, trailing-edge range boundaries but also provides opportunities for the ecological release of populations at the cool, leading edges of their distributions. Thus, as the climate warms, leading-edge populations are expected to utilize an increased range of habitat types, leading to larger population sizes and range expansion. Here, we test the hypothesis that the habitat associations of British butterflies have expanded over three decades of climate warming. We characterize the habitat breadth of 27 southerly distributed species from 77 monitoring transects between 1977 and 2007 by considering changes in densities of butterflies across 11 habitat types. Contrary to expectation, we find that 20 of 27 (74%) butterfly species showed long-term contractions in their habitat associations, despite some short-term expansions in habitat breadth in warmer-than-usual years. Thus, we conclude that climatic warming has ameliorated habitat contractions caused by other environmental drivers to some extent, but that habitat degradation continues to be a major driver of reductions in habitat breadth and population density of butterflies.