Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tom De Swaef is active.

Publication


Featured researches published by Tom De Swaef.


Journal of Experimental Botany | 2013

Phloem transport: a review of mechanisms and controls

Veerle De Schepper; Tom De Swaef; Ingvar Bauweraerts; Kathy Steppe

It is generally believed that an osmotically generated pressure gradient drives the phloem mass flow. So far, this widely accepted Münch theory has required remarkably few adaptations, but the debate on alternative and additional hypotheses is still ongoing. Recently, a possible shortcoming of the Münch theory has been pointed out, suggesting that the Münch pressure flow is more suitable for herbs than for trees. Estimation of the phloem resistance indicates that a point might be reached in long sieve tubes where the pressure required to drive the Münch flow cannot be generated. Therefore, the relay hypothesis regained belief as it implies that the sieve tubes are shorter then the plants axial axis. In the source phloem, three different loading strategies exist which probably result from evolutionary advantages. Passive diffusion seems to be the most primitive one, whereas active loading strategies substantially increase the growth potential. Along the transport phloem, a leakage-retrieval mechanism is observed. Appreciable amounts of carbohydrates are lost from the sieve tubes to feed the lateral sinks, while a part of these lost carbohydrates is subsequently reloaded into the sieve tubes. This mechanism is probably involved to buffer short-term irregularities in phloem turgor and gradient. In the long term, the mechanism controls the replenishment and remobilization of lateral stem storage tissues. As phloem of higher plants has multiple functions in plant development, reproduction, signalling, and growth, the fundamental understanding of the mechanisms behind phloem transport should be elucidated to increase our ability to influence plant growth and development.


Tree Physiology | 2015

Stem diameter variations as a versatile research tool in ecophysiology

Tom De Swaef; Veerle De Schepper; Maurits W. Vandegehuchte; Kathy Steppe

High-resolution stem diameter variations (SDV) are widely recognized as a useful drought stress indicator and have therefore been used in many irrigation scheduling studies. More recently, SDV have been used in combination with other plant measurements and biophysical modelling to study fundamental mechanisms underlying whole-plant functioning and growth. The present review aims to scrutinize the important insights emerging from these more recent SDV applications to identify trends in ongoing fundamental research. The main mechanism underlying SDV is variation in water content in stem tissues, originating from reversible shrinkage and swelling of dead and living tissues, and irreversible growth. The contribution of different stem tissues to the overall SDV signal is currently under debate and shows variation with species and plant age, but can be investigated by combining SDV with state-of-the-art technology like magnetic resonance imaging. Various physiological mechanisms, such as water and carbon transport, and mechanical properties influence the SDV pattern, making it an extensive source of information on dynamic plant behaviour. To unravel these dynamics and to extract information on plant physiology or plant biophysics from SDV, mechanistic modelling has proved to be valuable. Biophysical models integrate different mechanisms underlying SDV, and help us to explain the resulting SDV signal. Using an elementary modelling approach, we demonstrate the application of SDV as a tool to examine plant water relations, plant hydraulics, plant carbon relations, plant nutrition, freezing effects, plant phenology and dendroclimatology. In the ever-expanding SDV knowledge base we identified two principal research tracks. First, in detailed short-term experiments, SDV measurements are combined with other plant measurements and modelling to discover patterns in phloem turgor, phloem osmotic concentrations, root pressure and plant endogenous control. Second, long-term SDV time series covering many different species, regions and climates provide an expanding amount of phenotypic data of growth, phenology and survival in relation to microclimate, soil water availability, species or genotype, which can be coupled with genetic information to support ecological and breeding research under on-going global change. This under-exploited source of information has now encouraged research groups to set up coordinated initiatives to explore this data pool via global analysis techniques and data-mining.


Functional Plant Biology | 2010

Linking stem diameter variations to sap flow, turgor and water potential in tomato

Tom De Swaef; Kathy Steppe

Water status plays an important role for fruit quality and quantity in tomato (Solanum lycopersicum L.). However, determination of the plant water status via measurements of sap flow (FH2O) or stem diameter (D) cannot be done unambiguously since these variables are influenced by other effectors than the water status. We performed a semi-seasonal and a diurnal analysis of the simultaneous response of FH2O and D to environmental conditions, which allowed us to distinguish different influences on ΔD such as plant age, fruit load and water status and to reveal close diurnal relationships between FH2O and ΔD. In addition, an analysis of the diurnal mechanistic link between both variables was done by applying a slightly modified version of a water flow and storage model for trees. Tomato stems, in contrast with trees, seemed to maintain growth while transpiring because a large difference between turgor pressure (Ψp) and the yield threshold (Γ) was maintained. Finally, the simultaneous response of D and FH2O on irrigation events showed a possibility to detect water shortages.


Journal of Agricultural and Food Chemistry | 2012

U-HPLC-MS/MS To Quantify Liposoluble Antioxidants in Red-Ripe Tomatoes, Grown under Different Salt Stress Levels

Lieven Van Meulebroek; Lynn Vanhaecke; Tom De Swaef; Kathy Steppe; Hubert De Brabander

The growing interest of consumers in healthy food challenges growers to continuously improve the nutritional quality of their crops. In this research, the potential of a more saline growth environment for improved antioxidant concentration in tomato fruit was studied, and an U-HPLC-MS/MS method for the determination of lycopene, β-carotene, and α-tocopherol was optimized. Analytes were thereby separated on a 1.9 μm Hypersil GOLD C(18) column and quantified on a TSQ Vantage triple-quadropole mass spectrometer. The method displayed a short analysis time (6 min), a high specificity, and an excellent repeatability (≤6.39%). Furthermore, it was demonstrated that the electrical conductivity level of the applied nutrient solution did not unambiguously influence antioxidant concentration in tomato fruits. Future research should focus on moderate salt stress only and should aim at reducing natural variation by more closely controlling the growth environment and a more objective determination of the ripening degree.


Annals of Botany | 2013

Non-destructive estimation of root pressure using sap flow, stem diameter measurements and mechanistic modelling

Tom De Swaef; Jochen Hanssens; Annelies Cornelis; Kathy Steppe

BACKGROUND Upward water movement in plants via the xylem is generally attributed to the cohesion-tension theory, as a response to transpiration. Under certain environmental conditions, root pressure can also contribute to upward xylem water flow. Although the occurrence of root pressure is widely recognized, ambiguity exists about the exact mechanism behind root pressure, the main influencing factors and the consequences of root pressure. In horticultural crops, such as tomato (Solanum lycopersicum), root pressure is thought to cause cells to burst, and to have an important impact on the marketable yield. Despite the challenges of root pressure research, progress in this area is limited, probably because of difficulties with direct measurement of root pressure, prompting the need for indirect and non-destructive measurement techniques. METHODS A new approach to allow non-destructive and non-invasive estimation of root pressure is presented, using continuous measurements of sap flow and stem diameter variation in tomato combined with a mechanistic flow and storage model, based on cohesion-tension principles. KEY RESULTS Transpiration-driven sap flow rates are typically inversely related to stem diameter changes; however, this inverse relationship was no longer valid under conditions of low transpiration. This decoupling between sap flow rates and stem diameter variations was mathematically related to root pressure. CONCLUSIONS Root pressure can be estimated in a non-destructive, repeatable manner, using only external plant sensors and a mechanistic model.


Trees-structure and Function | 2014

Model-assisted evaluation of crop load effects on stem diameter variations and fruit growth in peach

Tom De Swaef; Carmen D. Mellisho; Annelies Baert; Veerle De Schepper; A. Torrecillas; W. Conejero; Kathy Steppe

Key messageThe paper identifies and quantifies how crop load influences plant physiological variables that determine stem diameter variations to better understand the effect of crop load on drought stress indicators.AbstractStem diameter (Dstem) variations have extensively been applied in optimisation strategies for plant-based irrigation scheduling in fruit trees. Two Dstem derived water status indicators, maximum daily shrinkage (MDS) and daily growth rate (DGR), are however influenced by other factors such as crop load, making it difficult to unambiguously use these indicators in practical irrigation applications. Furthermore, crop load influences the growth of individual fruits, because of competition for assimilates. This paper aims to explain the effect of crop load on DGR, MDS and individual fruit growth in peach using a water and carbon transport model that includes simulation of stem diameter variations. This modelling approach enabled to relate differences in crop load to differences in xylem and phloem water potential components. As such, crop load effects on DGR were attributed to effects on the stem phloem turgor pressure. The effect of crop load on MDS could be explained by the plant water status, the phloem carbon concentration and the elasticity of the tissue. The influence on fruit growth could predominantly be explained by the effect on the early fruit growth stages.


Plant Cell and Environment | 2015

High light decreases xylem contribution to fruit growth in tomato.

Jochen Hanssens; Tom De Swaef; Kathy Steppe

Recently, contradicting evidence has been reported on the contribution of xylem and phloem influx into tomato fruits, urging the need for a better understanding of the mechanisms involved in fruit growth. So far, little research has been performed on quantifying the effect of light intensity on the different contributors to the fruit water balance. However, as light intensity affects both transpiration and photosynthesis, it might be expected to induce important changes in the fruit water balance. In this study, tomato plants (Solanum lycopersicum L.) were grown in light and shade conditions and the fruit water balance was studied by measuring fruit growth of girdled and intact fruits with linear variable displacement transducers combined with a model-based approach. Results indicated that the relative xylem contribution significantly increased when shading lowered light intensity. This resulted from both a higher xylem influx and a lower phloem influx during the daytime. Plants from the shade treatment were able to maintain a stronger gradient in total water potential between stem and fruits during daytime, thereby promoting xylem influx. It appeared that the xylem pathway was still functional at 35 days after anthesis and that relative xylem contribution was strongly affected by environmental conditions.


Annals of Botany | 2018

Introducing turgor-driven growth dynamics into functional-structural plant models

Jonas Coussement; Tom De Swaef; P. Lootens; Isabel Roldán-Ruiz; Kathy Steppe

Background and Aims In many scenarios the availability of assimilated carbon is not the constraining factor of plant growth. Rather, organ growth appears driven by sink activity in which water availability plays a determinant role. Current functional-structural plant models (FSPMs) mainly focus on plant-carbon relations and largely disregard the importance of plant water status in organogenesis. Consequently, incorporating a turgor-driven growth concept, coupling carbon and water dynamics in an FSPM, presents a significant improvement towards capturing plant development in a more mechanistic manner. Methods An existing process-based water flow and storage model served as a basis for implementing water control in FSPMs. Its concepts were adjusted to the scale of individual plant organs and interwoven with the basic principles of modelling carbon dynamics to allow evaluation of turgor pressure across the entire plant. This was then linked to plant organ growth by applying the principles of the widely used Lockhart equation. Key results This model successfully integrates a mechanistic understanding of plant water transport dynamics coupled with simple carbon dynamics within a dynamically developing plant architecture. It allows evaluation of turgor pressure on the scale of plant organs, resulting in clear diel and long-term patterns, directly linked to plant organ growth. Conclusions A conceptual sap flow and turgor-driven growth model was introduced for functional-structural plant modelling. It is applicable to any plant architecture and allows visual exploration of the diel patterns of organ water content and growth. Integrated in existing FSPMs, this new concept fosters an array of possibilities for FSPMs, as it presents a different formulation of growth in terms of local processes, influenced by local and external conditions.


Frontiers in Plant Science | 2018

Trichoderma-Inoculated Miscanthus Straw Can Replace Peat in Strawberry Cultivation, with Beneficial Effects on Disease Control

Jane Debode; Caroline De Tender; Pieter Cremelie; Ana S. Lee; Tina Kyndt; Hilde Muylle; Tom De Swaef; Bart Vandecasteele

Peat based growing media are not ecologically sustainable and often fail to support biological control. Miscanthus straw was (1) tested to partially replace peat; and (2) pre-colonized with a Trichoderma strain to increase the biological control capacity of the growing media. In two strawberry pot trials (denoted as experiment I & II), extruded and non-extruded miscanthus straw, with or without pre-colonization with T. harzianum T22, was used to partially (20% v/v) replace peat. We tested the performance of each mixture by monitoring strawberry plant development, nutrient content in the leaves and growing media, sensitivity of the fruit to the fungal pathogen Botrytis cinerea, rhizosphere community and strawberry defense responses. N immobilization by miscanthus straw reduced strawberry growth and yield in experiment II but not in I. The pre-colonization of the straw with Trichoderma increased the post-harvest disease suppressiveness against B. cinerea and changed the rhizosphere fungal microbiome in both experiments. In addition, defense-related genes were induced in experiment II. The use of miscanthus straw in growing media will reduce the demand for peat and close resource loops. Successful pre-colonization of this straw with biological control fungi will optimize crop cultivation, requiring fewer pesticide applications, which will benefit the environment and human health.


Euphytica | 2018

Towards an objective evaluation of persistency of Lolium perenne swards using UAV imagery

Irene Borra-Serrano; Tom De Swaef; Jonas Aper; An Ghesquiere; Koen C. Mertens; David Nuyttens; Wouter Saeys; Ben Somers; Jürgen Vangeyte; Isabel Roldán-Ruiz; Peter Lootens

Perennial ryegrass (Lolium perenne) is a perennial crop used in temperate regions as forage. In L. perenne breeding programs, persistency is an important trait. Poor persistency results in sward degradation and associated yield and nutritive value losses. Breeders assess persistency of accessions using visual scoring in field plots during the 2nd or 3rd growing season. This evaluation system is easy and cheap but is not free from human bias. In this study, the correlation between the scoring done by different breeders was only 0.243. As an alternative we have developed a methodology to assess persistency of L. perenne breeding materials based on vegetation indices (VIs) derived from Unmanned Aerial Vehicle (UAV) imagery. The VIs Excess green (ExG2), Green Leaf Index and Normalized green intensity (GCC) were found to provide consistent results for flights carried out under different light conditions and were validated by ground reference information. The correlation between the VIs and the percentage of ground cover extracted from on-ground imagery was 0.885. To test the implementation of the method we compared the ExG2 value based approach to selection with a visual score based selection methodology as applied by two breeders. The breeding decisions of Breeder A agreed well with decisions based on ExG2 values (74.6%), but those of Breeder B displayed a lower agreement (54.0%). In contrast, agreement between decisions based on different flights was very high (91.6%). The methodology was validated for general applicability. In summary, the results demonstrate that basing persistency selection in L. perenne breeding programs on ExG2 values from UAV imagery is likely to be more objective in comparison to the currently-used visual scoring method.

Collaboration


Dive into the Tom De Swaef's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge