Tom Ducibella
Tufts University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tom Ducibella.
Developmental Biology | 1988
Tom Ducibella; Everett Anderson; David F. Albertini; Jeffrey J. Aalberg; Sathyabhama Rangarajan
Cortical granules (CGs) undergo a substantial change in distribution in the mouse oocyte cortex during meiotic maturation. In order to determine the mechanism of their change in distribution near the time of ovulation, CG density, total number per oocyte, and domain areas were quantitated. CGs were visualized microscopically by Lens culinaris agglutinin-biotin and Texas red-strepavidin fluorescence as well as by electron microscopy. Immature germinal vesicle stage (GV) oocytes from adult mice had a continuous cortical localization with some interior granules. Mature oocytes had an asymmetric cortical distribution with a CG-free domain, overlying the meiosis II metaphase spindle, occupying 40% of the cortex. The mean CG densities of the granule-occupied cortex of mature oocytes and the entire cortex of GV oocytes were 43 and 34 CGs/100 micron 2, respectively. The mean total numbers of CGs/oocyte were 4127 (mature) and 7440 (GV), and staining was absent in fertilized oocytes with two pronuclei. Calcium ionophore (A23187)-activated mature oocytes had a mean total number of 1235 CGs, some of which may have been in the process of exocytosis. The first polar body had few CGs, and thus was unlikely to account for the difference in CG number between GV and mature oocytes. The smaller total number and higher density of CGs in mature mouse oocytes suggests that both exocytosis and redistribution are plausible mechanisms for the development of the CG-free domain. Prefertilization exocytosis could account for the locus of sperm penetration which others have reported to occur in the hemisphere opposite the meiotic spindle in the mouse.
Developmental Biology | 1990
Tom Ducibella; Shigeaki Kurasawa; Sathyabhama Rangarajan; Gregory S. Kopf; Richard M. Schultz
Fertilization results in cortical granule exocytosis, which is thought to be involved in modifications of the zona pellucida that constitute the zona pellucida block to polyspermy. A previous report demonstrated that a decrease in the number of Lens culinaris agglutinin-staining granules, which are likely to be cortical granules, occurred during in vivo mouse oocyte maturation with arrest at metaphase II, as well as the formation of a cortical granule-free domain in the area of the metaphase II spindle (T. Ducibella, E. Anderson, D.F. Albertini, J. Aalberg, and S. Rangarajan, 1988, Dev. Biol. 130, 184-197). We extend these observations by reporting here that germinal vesicle-intact oocytes matured in vitro to metaphase II in either the absence or the presence of serum develop a cortical granule-free domain and have reduced numbers of cortical granules when compared to germinal vesicle-intact oocytes; these changes are similar to those of oocytes matured in vivo. The reduction in the number of cortical granules requires germinal vesicle breakdown, since it is prevented by dibutyryl cAMP, which inhibits germinal vesicle breakdown in vitro. The ability of oocytes to respond to the calcium ionophore A23187 with a reduction in the number of cortical granules is also associated with meiotic maturation and develops between 7 and 12 hr after initiation of maturation. The maturation-associated reduction in the number of cortical granules is likely to represent cortical granule exocytosis, since this reduction is accompanied by the formation of a cortical granule-free domain and a conversion of ZP2 to ZP2f when the oocytes are matured in vitro in serum-free medium; this zona pellucida modification occurs following fertilization and is thought to be due to cortical granule exocytosis. In contrast, the loss of cortical granules and development of the cortical granule-free domain of oocytes matured in vitro in the presence of serum is not accompanied by the modification of ZP2. The inhibitory effect of serum on the ZP2 modification may afford in vivo a physiological mechanism to prevent a precocious modification of the zona pellucida that could result in a premature block to polyspermy and hence inhibit fertilization.
Developmental Biology | 2008
Tom Ducibella; Rafael A. Fissore
Reviews in Developmental Biology have covered the pathways that generate the all-important intracellular calcium (Ca(2+)) signal at fertilization [Miyazaki, S., Shirakawa, H., Nakada, K., Honda, Y., 1993a. Essential role of the inositol 1,4,5-trisphosphate receptor/Ca(2+) release channel in Ca(2+) waves and Ca(2+) oscillations at fertilization of mammalian eggs. Dev. Biol. 158, 62-78; Runft, L., Jaffe, L., Mehlmann, L., 2002. Egg activation at fertilization: where it all begins. Dev. Biol. 245, 237-254] and the different temporal responses of Ca(2+) in many organisms [Stricker, S., 1999. Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev. Biol. 211, 157-176]. Those reviews raise the importance of identifying how Ca(2+) causes the events of egg activation (EEA) and to what extent these temporal Ca(2+) responses encode developmental information. This review covers recent studies that have analyzed how these Ca(2+) signals are interpreted by specific proteins, and how these proteins regulate various EEA responsible for the onset of development. Many of these proteins are protein kinases (CaMKII, PKC, MPF, MAPK, MLCK) whose activity is directly or indirectly regulated by Ca(2+), and whose amount increases during late oocyte maturation. We cover biochemical progress in defining the signaling pathways between Ca(2+) and the EEA, as well as discuss how oscillatory or multiple Ca(2+) signals are likely to have specific advantages biochemically and/or developmentally. These emerging concepts are put into historical context, emphasizing that key contributions have come from many organisms. The intricate interdependence of Ca(2+), Ca(2+)-dependent proteins, and the EEA raise many new questions for future investigations that will provide insight into the extent to which fertilization-associated signaling has long-range implications for development. In addition, answers to these questions should be beneficial to establishing parameters of egg quality for human and animal IVF, as well as improving egg activation protocols for somatic cell nuclear transfer to generate stem cells and save endangered species.
Developmental Biology | 2003
Styliani Markoulaki; Sara Matson; Allison L. Abbott; Tom Ducibella
Fertilization-induced intracellular calcium (Ca(2+)) oscillations stimulate the onset of mammalian development, and little is known about the biochemical mechanism by which these Ca(2+) signals are transduced into the events of egg activation. This study addresses the hypothesis that transient increases in Ca(2+) similar to those at fertilization stimulate oscillatory Ca(2+)/calmodulin-dependent kinase II (CaMKII) enzyme activity, incrementally driving the events of egg activation. Since groups of fertilized eggs normally oscillate asynchronously, synchronous oscillatory Ca(2+) signaling with a frequency similar to fertilization was experimentally induced in unfertilized mouse eggs by using ionomycin and manipulating extracellular calcium. Coanalysis of intracellular Ca(2+) levels and CaMKII activity in the same population of eggs demonstrated a rapid and transient enzyme response to each increase in Ca(2+). Enzyme activity increased 370% during the first Ca(2+) rise, representing about 60% of maximal activity, and had decreased to basal levels within 5 min from the time Ca(2+) reached its peak value. Single fertilized eggs monitored for Ca(2+) had a mean increase in CaMKII activity of 185%. One and two ionomycin-induced Ca(2+) transients resulted in 39 and 49% mean cortical granule (CG) loss, respectively, while CG exocytosis and resumption of meiosis were inhibited by a CaMKII antagonist. These studies demonstrate that changes in the level of Ca(2+) and in CaMKII activity can be studied in the same cell and that CaMKII activity is exquisitely sensitive to experimentally induced oscillations of Ca(2+) in vivo. The data support the hypothesis that CaMKII activity oscillates for a period of time after normal fertilization and temporally regulates many events of egg activation.
Developmental Biology | 1988
Tom Ducibella; Sathyabhama Rangarajan; Everett Anderson
The basis for the incompetence of the cortical reaction in germinal vesicle stage (GV) mouse oocytes was studied by evaluating cortical granules (CGs) and vesicles in GV and mature oocyte cortices. Dark and light CGs had a similar mean distance of 0.4-0.6 micron from the plasma membrane for GV and mature cortices. The cortex of mature oocytes had a large population of membrane-bounded, 0.1-1.0 micron (diameter) vesicles. More than three times as many vesicles were observed in the CG domains of mature oocytes as were observed in GV oocytes. This lack of cortical vesicles (with their potential to store calcium) and not CG depth may account for cortical reaction incompetence in GV oocytes.
Biology of Reproduction | 2006
Sara Matson; Styliani Markoulaki; Tom Ducibella
Abstract Although recent studies have demonstrated the importance of calcium/calmodulin (Ca2+/CAM) signaling in mammalian fertilization, many targets of Ca2+/CAM have not been investigated and represent potentially important regulatory pathways to transduce the Ca2+ signal that is responsible for most events of egg activation. A well-established Ca2+/CAM-dependent enzyme is myosin light chain kinase (MYLK2), the downstream target of which is myosin II, an isoform of myosin known to be important in cytokinesis. In fertilized mouse eggs, established inhibitors of MYLK2 and myosin II were investigated for their effects on events of egg activation. The MYLK2 antagonist, ML-7, did not decrease the activity of Ca2+/CAM protein kinase II or the elevation of intracellular Ca2+, and it did not delay the onset of Ca2+ oscillations. In contrast, ML-7 inhibited second polar body (PB) formation in a dose-dependent manner and reduced cortical granule (CG) exocytosis by a mean of approximately 50%. The myosin II isoform-specific inhibitor, blebbistatin, had similar inhibitory effects. Although both antagonists had no effect on anaphase onset, they inhibited second PB formation by preventing spindle rotation before telophase II and normal contractile ring constriction. To our knowledge, this is the first report that MYLK2 and myosin II are involved in regulating the position of the meiotic spindle, formation of the second PB, and CG exocytosis. The present results suggest that MYLK2 is one of a family of CAM-dependent proteins that act as multifunctional regulators and transduce the Ca2+ signal at fertilization.
Molecular Reproduction and Development | 1997
Tom Ducibella; Leah Lefevre
Although pharmacological agonists of protein kinase C (PKC) stimulate some events of mammalian egg activation, including cortical granule (CG) exocytosis, it is not known if these events are dependent on PKC activation during the normal process of fertilization. In order to examine the potential role of PKC in CG exocytosis, this study investigated whether PKC agonists faithfully mimic CG release and whether PKC antagonists block fertilization‐induced CG release in mature mouse eggs. Phorbol ester (TPA, 2.5 ng/ml) treatment resulted in an atypical pattern of CG release in which there was a greater net loss of CGs in the equatorial region of the egg than in the region opposite the spindle. This pattern also was in contrast to that during fertilization, in which CG release occurred randomly throughout the cortex. Fertilization experiments utilized two different PKC inhibitors, bisindolyl‐maleimide (5 μM) and chelerytherine (0.8 μM), targeted to both the “conserved” substrate and ATP binding domains of PKC. Simultaneous use of both inhibitors at maximal concentrations (compatible with fertilization and above their IC50S) resulted in no detectable inhibition of CG release in treated fertilized eggs compared to controls. In addition, no inhibition of anaphase onset was observed in treated fertilized eggs. Activity of the inhibitors was verified by demonstrating that they blocked the induction of CG loss by TPA. Moreover, 1 μM staurosporine, a potent but less specific antagonist of PKC, also did not block CG loss, whereas the metaphase‐anaphase transition was temporarily inhibited. The results indicate that TPA does not faithfully mimic CG release in fertilized eggs, that a role for PKC in CG release at fertilization remains to be established, and that other calcium‐dependent effectors may be involved in CG exocytosis. Mol Reprod Dev 46:216–226, 1997.
Theriogenology | 1998
Tom Ducibella
Normal development depends on both the timing of fertilization and gamete quality, especially in assisted reproductive procedures. Recent studies of the proteins involved in the polyspermy block and cell cycle progression provide a cellular and biochemical basis for the short fertilizable lifespan of the mammalian egg in several species. Specifically, the status of cortical granules, zona proteins, cell cycle kinases, and intracellular calcium stores form a powerful panel of assays to monitor egg activation competence in eggs undergoing maturation and spontaneous activation events in mature eggs. An understanding of how these indicators are influenced by in vitro conditions and exogenous follicular stimulation should provide useful information for optimizing assisted reproductive procedures.
Biology of Reproduction | 2001
Allison L. Abbott; Rafael A. Fissore; Tom Ducibella
Abstract Preovulatory, germinal vesicle (GV)-stage mouse oocytes are unable to undergo normal cortical granule (CG) secretion. Full secretory competence is observed by metaphase II (MII) of meiosis and involves the development of calcium response mechanisms. To identify the deficient or inhibited step in CG secretion, preovulatory GV-stage oocytes were stimulated and tested for their ability to undergo translocation, docking, and/or fusion. The mean CG distance to the plasma membrane was not reduced in fertilized or sperm fraction-injected, GV-stage oocytes relative to that in control GV-stage oocytes. In addition, analysis of individual CG distances to the plasma membrane indicated no subpopulation of CGs competent to translocate. Further analysis demonstrated that secretory incompetence likely is not due to a lack of proximity of CGs to the eggs primary calcium store, the endoplasmic reticulum. Calcium/calmodulin-dependent protein kinase II (CaMKII), which is reportedly involved in secretory granule translocation and secretion in many cells, including eggs, was investigated. A 60-kDa CaMKII isoform detected by Western blot analysis increased 150% during oocyte maturation. The CaMKII activity assays indicated that MII-stage eggs correspondingly have 110% more maximal activity than GV-stage oocytes. These data demonstrate that the primary secretory deficiency is due to a failure of CG translocation, and that a maturation-associated increase in CaMKII correlates with the acquisition of secretory competence and the ability of the egg to undergo normal activation.
Journal of Biological Chemistry | 2002
Jeremy Smyth; Allison L. Abbott; Bora Lee; Ilse Sienaert; Nael Nadif Kasri; Humbert De Smedt; Tom Ducibella; Ludwig Missiaen; Jan B. Parys; Rafael A. Fissore
KN-93, a Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor, concentration-dependently and reversibly inhibited inositol 1,4,5-trisphosphate receptor (IP3R)-mediated [Ca2+] i signaling in mouse eggs and permeabilized A7r5 smooth muscle cells, two cell types predominantly expressing type-1 IP3R (IP3R-1). KN-92, an inactive analog, was ineffective. The inhibitory action of KN-93 on Ca2+ signaling depended neither on effects on IP3 metabolism nor on the filling grade of Ca2+stores, suggesting a direct action on the IP3R. Inhibition was independent of CaMKII, since in identical conditions other CaMKII inhibitors (KN-62, peptide 281–309, and autocamtide-related inhibitory peptide) were ineffective and since CaMKII activation was precluded in permeabilized cells. Moreover, KN-93 was most effective in the absence of Ca2+. Analysis of Ca2+ release in A7r5 cells at varying [IP3], of IP3R-1 degradation in eggs, and of [3H]IP3 binding in Sf9 microsomes all indicated that KN-93 did not affect IP3binding. Comparison of the inhibition of Ca2+ release and of [3H]IP3 binding by KN-93 and calmodulin (CaM), either separately or combined, was compatible with a specific interaction of KN-93 with a CaM-binding site on IP3R-1. This was also consistent with the much smaller effect of KN-93 in permeabilized 16HBE14o− cells that predominantly express type 3 IP3R, which lacks the high affinity CaM-binding site. These findings indicate that KN-93 inhibits IP3R-1 directly and may therefore be a useful tool in the study of IP3R functional regulation.