Tom Dunkley Jones
University of Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tom Dunkley Jones.
Nature | 2012
Heiko Pälike; Mitchell Lyle; Hiroshi Nishi; Isabella Raffi; Andy Ridgwell; Kusali Gamage; Adam Klaus; Gary D Acton; Louise Anderson; Jan Backman; Jack G. Baldauf; Catherine Beltran; Steven M. Bohaty; Paul R. Bown; W.H. Busch; James E T Channell; Cecily O. J. Chun; Margaret Lois Delaney; Pawan Dewangan; Tom Dunkley Jones; Kirsty M. Edgar; Helen F Evans; Peter Fitch; Gavin L. Foster; Nikolaus Gussone; Hitoshi Hasegawa; Ed C. Hathorne; Hiroki Hayashi; Jens O. Herrle; Ann Holbourn
Atmospheric carbon dioxide concentrations and climate are regulated on geological timescales by the balance between carbon input from volcanic and metamorphic outgassing and its removal by weathering feedbacks; these feedbacks involve the erosion of silicate rocks and organic-carbon-bearing rocks. The integrated effect of these processes is reflected in the calcium carbonate compensation depth, which is the oceanic depth at which calcium carbonate is dissolved. Here we present a carbonate accumulation record that covers the past 53 million years from a depth transect in the equatorial Pacific Ocean. The carbonate compensation depth tracks long-term ocean cooling, deepening from 3.0–3.5 kilometres during the early Cenozoic (approximately 55 million years ago) to 4.6 kilometres at present, consistent with an overall Cenozoic increase in weathering. We find large superimposed fluctuations in carbonate compensation depth during the middle and late Eocene. Using Earth system models, we identify changes in weathering and the mode of organic-carbon delivery as two key processes to explain these large-scale Eocene fluctuations of the carbonate compensation depth.
Philosophical Transactions of the Royal Society A | 2010
Mark A. Maslin; Matthew Owen; Richard A. Betts; Simon Day; Tom Dunkley Jones; Andy Ridgwell
Gas hydrates are ice-like deposits containing a mixture of water and gas; the most common gas is methane. Gas hydrates are stable under high pressures and relatively low temperatures and are found underneath the oceans and in permafrost regions. Estimates range from 500 to 10 000 giga tonnes of carbon (best current estimate 1600–2000 GtC) stored in ocean sediments and 400 GtC in Arctic permafrost. Gas hydrates may pose a serious geohazard in the near future owing to the adverse effects of global warming on the stability of gas hydrate deposits both in ocean sediments and in permafrost. It is still unknown whether future ocean warming could lead to significant methane release, as thermal penetration of marine sediments to the clathrate–gas interface could be slow enough to allow a new equilibrium to occur without any gas escaping. Even if methane gas does escape, it is still unclear how much of this could be oxidized in the overlying ocean. Models of the global inventory of hydrates and trapped methane bubbles suggest that a global 3°C warming could release between 35 and 940 GtC, which could add up to an additional 0.5°C to global warming. The destabilization of gas hydrate reserves in permafrost areas is more certain as climate models predict that high-latitude regions will be disproportionately affected by global warming with temperature increases of over 12°C predicted for much of North America and Northern Asia. Our current estimates of gas hydrate storage in the Arctic region are, however, extremely poor and non-existent for Antarctica. The shrinking of both the Greenland and Antarctic ice sheets in response to regional warming may also lead to destabilization of gas hydrates. As ice sheets shrink, the weight removed allows the coastal region and adjacent continental slope to rise through isostacy. This removal of hydrostatic pressure could destabilize gas hydrates, leading to massive slope failure, and may increase the risk of tsunamis.
Geology | 2008
Paul Nicholas Pearson; Ian Kenneth McMillan; Bridget S. Wade; Tom Dunkley Jones; H.K. Coxall; Paul R. Bown; Caroline H. Lear
The Eocene-Oligocene transition (between ca. 34 and 33.5 Ma) is the most profound episode of lasting global change to have occurred since the end of the Cretaceous. Diverse geological evidence from around the world indicates cooling, ice growth, sea-level fall, and accelerated extinction at this time. Turnover in the oceanic plankton included the extinction of the foraminifer Family Hantkeninidae, which marks the Eocene-Oligocene boundary in its type section. Another prominent extinction affected larger foraminifera, which resulted in the loss of some of the worlds most abundant and widespread shallow-water carbonate-secreting organisms. However, problems of correlation have made it difficult to relate these events to each other and to the global climate transition as widely recorded in oxygen and carbon isotope records from deep-sea cores. Here, we report new paleontological and geochemical data from hemipelagic sediment cores on the African margin of the Indian Ocean (Tanzania Drilling Project Sites 11, 12 and 17). The Eocene-Oligocene boundary is located between two principal steps in the stable-isotope records. The extinction of shallow-water carbonate producers coincided with an extended phase of ecological disruption in the plankton and preceded maximum glacial conditions in the early Oligocene by ∼200 k.y.
Geology | 2010
Daniel J. Lunt; Paul J. Valdes; Tom Dunkley Jones; Andy Ridgwell; Alan M. Haywood; Daniela N. Schmidt; Robert Marsh; Mark A. Maslin
Changes in ocean circulation have been proposed as a trigger mechanism for the large coupled climate and carbon cycle perturbations at the Paleocene-Eocene Thermal Maximum (PETM, ca. 55 Ma). An abrupt warming of oceanic intermediate waters could have initiated the thermal destabilization of sediment-hosted methane gas hydrates and potentially triggered sediment slumps and slides. In an ensemble of fully coupled atmosphere-ocean general circulation model (AOGCM) simulations of the late Paleocene and early Eocene, we identify such a circulation-driven enhanced intermediate-water warming. Critically, we find an approximate twofold amplification of Atlantic intermediate-water warming when CO2 levels are doubled from 2x to 4x preindustrial CO2 compared to when they are doubled from 1x to 2x. This warming is largely focused on the equatorial and South Atlantic and is driven by a significant reduction in deep-water formation from the Southern Ocean. This scenario is consistent with altered PETM circulation patterns inferred from benthic carbon isotope data and the intensity of deep-sea carbonate dissolution in the South Atlantic. The linkage between intermediate-water warming and gas hydrate destabilization could provide an important feedback in the establishment of peak PETM warmth.
Paleoceanography | 2008
Tom Dunkley Jones; Paul R. Bown; Paul Nicholas Pearson; Bridget S. Wade; H.K. Coxall; Caroline H. Lear
A high-resolution record of exceptionally well preserved calcareous nannofossil assemblages from Tanzania is marked by two key transitions closely related to the climatic events of the Eocene-Oligocene transition (EOT). The first transition, at similar to 34.0 Ma, precedes the first positive shift in delta O-18 and coincides with a distinct interval of very low nannofossil abundance and a cooling in sea surface temperatures (SST). The second, at similar to 33.63 Ma, is immediately above the Eocene-Oligocene boundary (EOB) and is associated with a significant drop in nannofossil diversity. Both transitions involve significant reductions in the abundance of holococcoliths and other oligotrophic taxa. These changes in calcareous phytoplankton assemblages indicate (1) a widespread and significant perturbation to the low-latitude surface ocean closely tied to the EOB, (2) a potential role for reduced carbonate primary production at the onset of global cooling, and (3) a significant increase in nutrient availability in the low-latitude surface ocean through the EOT.
Journal of Systematic Palaeontology | 2009
Tom Dunkley Jones; Paul R. Bown; Paul Nicholas Pearson
Synopsis The most well preserved and diverse upper Eocene to lower Oligocene assemblage of calcareous nannofossils (coccolithophores) known to date is described from the Pande Clays, Kilwa Group, Tanzania. The assemblage is exceptionally diverse, with a total of 115 species described herein, which significantly exceeds the current globally compiled nannofossil species diversity of 67 for the latest Eocene (NP19/20). The enhanced diversity observed in these sections is concentrated in the numerous Rhabdosphaeraceae (20 species), Syracosphaeraceae and holococcolith taxa (19 species) that are unknown from any other contemporaneous location. Scanning electron microscope (SEM) studies reveal exquisite preservation down to the sub‐micron scale in many of these taxa, including the architecture of < 3 μm holococcoliths and the details of grills and processes in other very small fragile taxa ‐ a size class which is rarely preserved even in Recent sediments. A distinct assemblage of at least four specialist lower‐photic zone taxa ‐ three Gladiolithus species and Algirosphaera fabaceus ‐ is present in these sediments. The occurrence of these highly specialised coccoliths in the Palaeogene sediments of Tanzania extends their previously known late Quaternary fossil record by tens of millions of years. The controls on the exquisite preservation of such a diverse nannofossil assemblage are difficult to determine but we speculate that a diverse open‐ocean, oligotrophic coccolithophore assemblage was being rapidly buried and sealed within a clay‐rich facies that is more characteristic of shelf‐environments, a combination that, to date, makes the Palaeogene sediments of Tanzania unique. One new genus, Pocillithus, is described, consisting of very small spine‐bearing muroliths that may be related to extant narrow‐rimmed muroliths of uncertain affinity. Ten new species are described: Pocillithus spinulifer, Reticulofenestra macmillanii, Calcidiscus parvus, Syracosphaera monechiae, Syracosphaera raffiae, Blackites culter, Blackites shafikii, Acanthoica backmanii, Orthozygus occultus and Orthozygus arcus.
Philosophical Transactions of the Royal Society B | 2016
Isabel S. Fenton; Paul Nicholas Pearson; Tom Dunkley Jones; Alexander Farnsworth; Daniel J. Lunt; Paul Markwick; Andy Purvis
The Cenozoic planktonic foraminifera (PF) (calcareous zooplankton) have arguably the most detailed fossil record of any group. The quality of this record allows models of environmental controls on macroecology, developed for Recent assemblages, to be tested on intervals with profoundly different climatic conditions. These analyses shed light on the role of long-term global cooling in establishing the modern latitudinal diversity gradient (LDG)—one of the most powerful generalizations in biogeography and macroecology. Here, we test the transferability of environment-diversity models developed for modern PF assemblages to the Eocene epoch (approx. 56–34 Ma), a time of pronounced global warmth. Environmental variables from global climate models are combined with Recent environment–diversity models to predict Eocene richness gradients, which are then compared with observed patterns. The results indicate the modern LDG—lower richness towards the poles—developed through the Eocene. Three possible causes are suggested for the mismatch between statistical model predictions and data in the Early Eocene: the environmental estimates are inaccurate, the statistical model misses a relevant variable, or the intercorrelations among facets of diversity—e.g. richness, evenness, functional diversity—have changed over geological time. By the Late Eocene, environment–diversity relationships were much more similar to those found today.
Science | 2011
Samantha J. Gibbs; Stuart A. Robinson; Paul R. Bown; Tom Dunkley Jones; Jorijntje Henderiks
Erba et al. (Reports, 23 July 2010, p. 428) attributed calcareous nannofossil morphology and assemblage changes across Cretaceous Oceanic Anoxic Event 1a to the effects of surface ocean acidification. We argue that the quality of carbonate preservation in these sequences, the unsupported assumptions of the biotic response to acidity, and the absence of independent proxy estimates for ocean pH or atmospheric pCO2 render this conclusion questionable.
PLOS ONE | 2016
Isabel S. Fenton; Paul Nicholas Pearson; Tom Dunkley Jones; Andy Purvis
Global diversity patterns are thought to result from a combination of environmental and historical factors. This study tests the set of ecological and evolutionary hypotheses proposed to explain the global variation in present-day coretop diversity in the macroperforate planktonic foraminifera, a clade with an exceptional fossil record. Within this group, marine surface sediment assemblages are thought to represent an accurate, although centennial to millennial time-averaged, representation of recent diversity patterns. Environmental variables chosen to capture ocean temperature, structure, productivity and seasonality were used to model a range of diversity measures across the world’s oceans. Spatial autoregressive models showed that the same broad suite of environmental variables were important in shaping each of the four largely independent diversity measures (rarefied species richness, Simpson’s evenness, functional richness and mean evolutionary age). Sea-surface temperature explains the largest portion of diversity in all four diversity measures, but not in the way predicted by the metabolic theory of ecology. Vertical structure could be linked to increased diversity through the strength of stratification, but not through the depth of the mixed layer. There is limited evidence that seasonal turnover explains diversity patterns. There is evidence for functional redundancy in the low-latitude sites. The evolutionary mechanism of deep-time stability finds mixed support whilst there is relatively little evidence for an out-of-the-tropics model. These results suggest the diversity patterns of planktonic foraminifera cannot be explained by any one environmental variable or proposed mechanism, but instead reflect multiple processes acting in concert.
PLOS ONE | 2018
Martin Grundy; Tom Dunkley Jones; Liban Elmi; Michael N. Hall; Adam Graham; Nigel H. Russell; Monica Pallis
Blasts from different patients with acute myeloid leukemia (AML) vary in the agent(s) to which they are most responsive. With a myriad of novel agents to evaluate, there is a lack of predictive biomarkers to precisely assign targeted therapies to individual patients. Primary AML cells often survive poorly in vitro, thus confounding conventional cytotoxicity assays. The purpose of this work was to assess the potential of two same-day functional predictive assays in AML cell lines to predict long-term response to chemotherapy. (i) Ribosomal protein S6 (rpS6) is a downstream substrate of PI3K/akt/mTOR/ kinase and MAPK kinase pathways and its dephosphorylation is also triggered by DNA double strand breaks. Phospho-rpS6 is reliably measurable by flow cytometry and thus has the potential to function as a biomarker of responsiveness to several therapeutic agents. (ii) A cell’s propensity for apoptosis can be interrogated via a functional assay termed “Dynamic BH3 Profiling” in which mitochondrial outer membrane permeabilization in drug-treated cells can be driven by pro-apoptotic BH3 domain peptides such as PUMA-BH3. The extent to which a particular cell is primed for apoptosis by the drug can be determined by measuring the amount of cytochrome C released on addition of BH3 peptide. We demonstrate that phospho-rpS6 expression and PUMA-BH3 peptide-induced cytochrome C release after 4 hours both predict long term chemoresponsiveness to tyrosine kinase inhibitors and DNA double strand break inducers in AML cell lines. We also describe changes in expression levels of the prosurvival BCL-2 family member Mcl-1 and the pro-apoptotic protein BIM after short term drug culture.