Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tom H. Lindner is active.

Publication


Featured researches published by Tom H. Lindner.


Nature Genetics | 2000

Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus

Yukio Horikawa; Naohisa Oda; Nancy J. Cox; Xiangquan Li; Marju Orho-Melander; Manami Hara; Yoshinori Hinokio; Tom H. Lindner; Hirosato Mashima; Peter Schwarz; Laura del Bosque-Plata; Yohko Horikawa; Yukie Oda; Issei Yoshiuchi; Susan Colilla; Kenneth S. Polonsky; Shan Wei; Patrick Concannon; Naoko Iwasaki; Jan Schulze; Leslie J. Baier; Clifton Bogardus; Leif Groop; Eric Boerwinkle; Craig L. Hanis; Graeme I. Bell

Type 2 or non-insulin-dependent diabetes mellitus (NIDDM) is the most common form of diabetes worldwide, affecting approximately 4% of the worlds adult population. It is multifactorial in origin with both genetic and environmental factors contributing to its development. A genome-wide screen for type 2 diabetes genes carried out in Mexican Americans localized a susceptibility gene, designated NIDDM1, to chromosome 2. Here we describe the positional cloning of a gene located in the NIDDM1 region that shows association with type 2 diabetes in Mexican Americans and a Northern European population from the Botnia region of Finland. This putative diabetes-susceptibility gene encodes a ubiquitously expressed member of the calpain-like cysteine protease family, calpain-10 (CAPN10). This finding suggests a novel pathway that may contribute to the development of type 2 diabetes.


Nature Genetics | 2002

Mutations in the gene encoding the lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger-Huet anomaly).

Katrin Hoffmann; Christine Dreger; Ada L. Olins; Donald E. Olins; Leonard D. Shultz; Barbara Lucke; Hartmut Karl; Reinhard Kaps; Dietmar Müller; Amparo Vayá; Justo Aznar; Russell E. Ware; Norberto Sotelo Cruz; Tom H. Lindner; Harald Herrmann; André Reis; Karl Sperling

Pelger–Huët anomaly (PHA; OMIM *169400) is an autosomal dominant disorder characterized by abnormal nuclear shape and chromatin organization in blood granulocytes. Affected individuals show hypolobulated neutrophil nuclei with coarse chromatin. Presumed homozygous individuals have ovoid neutrophil nuclei, as well as varying degrees of developmental delay, epilepsy and skeletal abnormalities. Homozygous offspring in an extinct rabbit lineage showed severe chondrodystrophy, developmental anomalies and increased pre- and postnatal mortality. Here we show, by carrying out a genome-wide linkage scan, that PHA is linked to chromosome 1q41–43. We identified four splice-site, two frameshift and two nonsense mutations in LBR, encoding the lamin B receptor. The lamin B receptor (LBR), a member of the sterol reductase family, is evolutionarily conserved and integral to the inner nuclear membrane; it targets heterochromatin and lamins to the nuclear membrane. Lymphoblastoid cells from heterozygous individuals affected with PHA show reduced expression of the lamin B receptor, and cells homozygous with respect to PHA contain only trace amounts of it. We found that expression of the lamin B receptor affects neutrophil nuclear shape and chromatin distribution in a dose-dependent manner. Our findings have implications for understanding nuclear envelope–heterochromatin interactions, the pathogenesis of Pelger-like conditions in leukemia, infection and toxic drug reactions, and the evolution of neutrophil nuclear shape.


Bioinformatics | 2005

easyLINKAGE-Plus—automated linkage analyses using large-scale SNP data

Katrin Hoffmann; Tom H. Lindner

UNLABELLED We extended the original easyLINKAGE program by enabling linkage analyses for large-scale SNP data in addition to those of microsatellites. We implemented new modules for Allegro, Merlin, SimWalk, GeneHunter Imprinting, GeneHunter TwoLocus, SuperLink and extended FastSLink by automatic loop breaking and new outputs. We added conditional linkage analyses as well as multipoint simulation studies, and extended error test routines by checking for Mendelian/non-Mendelian genotyping errors and for deviations from Hardy-Weinberg equilibrium. Data can be analyzed in sets of markers, in defined centimorgan intervals and by using different allele frequency algorithms. The outputs consist of genome-wide as well as chromosomal postscript plots of LOD scores, NPL scores, P-values and other parameters. AVAILABILITY http://www.uni-wuerzburg.de/nephrologie/molecular_genetics/molecular_genetics.htm CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary information is available on the website. The current version is v4.01beta.


Diabetes | 1997

Mutations in the Hepatocyte Nuclear Factor-1α Gene in MODY and Early-Onset NIDDM: Evidence for a Mutational Hotspot in Exon 4

Pamela J. Kaisaki; Stephan Menzel; Tom H. Lindner; Naohisa Oda; Ilona Rjasanowski; Jürgen Sahm; Gustav Meincke; Jan Schulze; H. Schmechel; Cornelia Petzold; Hellmuth M Ledermann; Günther Sachse; V Vicky Boriraj; Ruth Menzel; Wolfgang Kerner; Robert Turner; Kazuya Yamagata; Graeme I. Bell

We have recently shown that mutations in the gene encoding the transcription factor hepatocyte nuclear factor (HNF)-1α are the cause of one form of maturity-onset diabetes of the young (MODY3). Here, we report the exon-intron organization and partial sequence of the human HNF-1α gene. In addition, we have screened the ten exons and flanking introns of this gene for mutations in a group of 25 unrelated white subjects from Germany who presented with NIDDM before 35 years of age and had a first-degree relative with NIDDM. Mutations were identified in nine of these individuals, suggesting that mutations in the HNF-1α gene are a common cause of diabetes in German subjects with early-onset NIDDM and a family history of diabetes. Thus, screening for mutations in this gene may be indicated in subjects with early-onset NIDDM. Interestingly, three of the nine mutations occurred at the same site in exon 4 with insertion of a C in a polyCtract, centered around codon 290 (designated Pro291fsinsC), thereby resulting in a frameshift during translation and premature termination. Analyses of linked DNA polymorphisms in the HNF-1α gene indicated that the Pro291fsinsC mutation was present on a different haplotype in each subject, implying that the polyC tract represents a mutational hot spot. We have also identified the mutation in the HNF-1α gene in the Jutland pedigree, one of the original MODY pedigrees reported in the literature, as being a T→G substitution in codon 241, resulting in the replacement of a conserved Cys by Gly (C241G). The information on the sequence of the HNF-1α gene and its promoter region will facilitate the search for mutations in other subjects and studies of the role of the gene in determining normal β-cell function.


Diabetes | 1997

Maturity-onset diabetes of the young due to a mutation in the hepatocyte nuclear factor-4 alpha binding site in the promoter of the hepatocyte nuclear factor-1 alpha gene

Tom H. Lindner; Brian N. Cockburn; Pamela J. Kaisaki; Fabio Gragnoli; Gino Marozzi; Graeme I. Bell

Recent studies have shown that mutations in the transcription factor hepatocyte nuclear factor (HNF)-1α are the cause of one form of maturity-onset diabetes of the young (MODY3). These studies have identified mutations in the mRNA and protein coding regions of this gene that result in the synthesis of an abnormal mRNA or protein. Here, we report an Italian family in which an A→C substitution at nucleotide -58 of the promoter region of the HNF-1α gene cosegregates with MODY. This mutation is located in a highly conserved region of the promoter and disrupts the binding site for the transcription factor HNF-4α, mutations in the gene encoding HNF-4α being another cause of MODY (MODY1). This result demonstrates that decreased levels of HNF-1α per se can cause MODY. Moreover, it indicates that both the promoter and coding regions of the HNF-1α gene should be screened for mutations in subjects thought to have MODY because of mutations in this gene.


American Journal of Human Genetics | 2006

Escobar Syndrome Is a Prenatal Myasthenia Caused by Disruption of the Acetylcholine Receptor Fetal γ Subunit

Katrin Hoffmann; Juliane S. Müller; Sigmar Stricker; André Mégarbané; Anna Rajab; Tom H. Lindner; Monika Cohen; Eliane Chouery; Lynn Adaimy; Ismat Ghanem; Valérie Delague; Eugen Boltshauser; Beril Talim; Rita Horvath; Peter N. Robinson; Hanns Lochmüller; Christoph Hübner; Stefan Mundlos

Escobar syndrome is a form of arthrogryposis multiplex congenita and features joint contractures, pterygia, and respiratory distress. Similar findings occur in newborns exposed to nicotinergic acetylcholine receptor (AChR) antibodies from myasthenic mothers. We performed linkage studies in families with Escobar syndrome and identified eight mutations within the gamma -subunit gene (CHRNG) of the AChR. Our functional studies show that gamma -subunit mutations prevent the correct localization of the fetal AChR in human embryonic kidney-cell membranes and that the expression pattern in prenatal mice corresponds to the human clinical phenotype. AChRs have five subunits. Two alpha, one beta, and one delta subunit are always present. By switching gamma to epsilon subunits in late fetal development, fetal AChRs are gradually replaced by adult AChRs. Fetal and adult AChRs are essential for neuromuscular signal transduction. In addition, the fetal AChRs seem to be the guide for the primary encounter of axon and muscle. Because of this important function in organogenesis, human mutations in the gamma subunit were thought to be lethal, as they are in gamma -knockout mice. In contrast, many mutations in other subunits have been found to be viable but cause postnatally persisting or beginning myasthenic syndromes. We conclude that Escobar syndrome is an inherited fetal myasthenic disease that also affects neuromuscular organogenesis. Because gamma expression is restricted to early development, patients have no myasthenic symptoms later in life. This is the major difference from mutations in the other AChR subunits and the striking parallel to the symptoms found in neonates with arthrogryposis when maternal AChR auto-antibodies crossed the placenta and caused the transient inactivation of the AChR pathway.


Journal of Clinical Investigation | 1997

Hepatic function in a family with a nonsense mutation (R154X) in the hepatocyte nuclear factor-4alpha/MODY1 gene.

Tom H. Lindner; Hiroto Furuta; Brian N. Cockburn; Cornelia Petzold; Hannes Rietzsch; U Weiss; Jan Schulze; Graeme I. Bell

Maturity-onset diabetes of the young (MODY) is a genetically heterogeneous monogenic disorder characterized by autosomal dominant inheritance, onset usually before 25 yr of age, and abnormal pancreatic beta-cell function. Mutations in the hepatocyte nuclear factor(HNF)-4alpha/MODY1, glucokinase/MODY2, and HNF-1alpha/MODY3 genes can cause this form of diabetes. In contrast to the glucokinase and HNF-1alpha genes, mutations in the HNF-4alpha gene are a relatively uncommon cause of MODY, and our understanding of the MODY1 form of diabetes is based on studies of only a single family, the R-W pedigree. Here we report the identification of a second family with MODY1 and the first in which there has been a detailed characterization of hepatic function. The affected members of this family, Dresden-11, have inherited a nonsense mutation, R154X, in the HNF-4alpha gene, and are predicted to have reduced levels of this transcription factor in the tissues in which it is expressed, including pancreatic islets, liver, kidney, and intestine. Subjects with the R154X mutation exhibited a diminished insulin secretory response to oral glucose. HNF-4alpha plays a central role in tissue-specific regulation of gene expression in the liver, including the control of synthesis of proteins involved in cholesterol and lipoprotein metabolism and the coagulation cascade. Subjects with the R154X mutation, however, showed no abnormalities in lipid metabolism or coagulation except for a paradoxical 3.3-fold increase in serum lipoprotein(a) levels, nor was there any evidence of renal dysfunction in these subjects. The results suggest that MODY1 is primarily a disorder of beta-cell function.


Brain | 2010

Kelch-like homologue 9 mutation is associated with an early onset autosomal dominant distal myopathy

Sebahattin Cirak; Florian von Deimling; Shrikesh Sachdev; Wesley J. Errington; Ralf Herrmann; Carsten G. Bönnemann; Knut Brockmann; Stephan Hinderlich; Tom H. Lindner; Alice Steinbrecher; Katrin Hoffmann; Gilbert G. Privé; Mark Hannink; Peter Nürnberg; Thomas Voit

Distal myopathies are a heterogeneous group of disorders characterized by progressive weakness and muscular atrophy, beginning in distal limb muscles and affecting proximal limb muscles at a later stage. We studied a large German kindred with 10 affected members. Weakness and atrophy of the anterior tibial muscles started between the ages of 8 and 16 years, followed by atrophy of intrinsic hand muscles. Progression was slow, and patients retained the ability to walk until the seventh decade. Serum creatinine kinase levels were increased in the range of 150–1400 U/l. Muscle biopsies showed myopathic changes, whereas immunohistochemistry showed normal expression of marker proteins for muscular dystrophies. Patients had reduced sensation with stocking-glove distribution in the distal limbs in later life. Nerve conduction studies revealed no evidence of neuropathy. Genome-wide linkage analysis in this family revealed a new locus for distal myopathy at 9p21.2-p22.3 (multipoint logarithm of the odds ratio = 4.21). By positional cloning we found a heterozygous mutation L95F in the Kelch-like homologue 9 gene, encoding a bric-a-brac Kelch protein. Molecular modelling indicated that the mutation may interfere with the interaction of the bric-a-brac domain with Cullin 3. Coimmunoprecipitation experiments confirmed that the mutation reduces association with Cullin 3 in the Kelch-like homologue 9-Cullin 3–E3 ubiquitin ligase complex, which is involved in ubiquitin-dependent protein degradation. We identified a unique form of early onset autosomal dominant distal myopathy which is associated with a Kelch-like homologue 9 mutation and interferes with normal skeletal muscle through a novel pathogenetic mechanism.


European Journal of Human Genetics | 2010

High-throughput sequencing of microdissected chromosomal regions

Anja Weise; Bernd Timmermann; Manfred Grabherr; Martin Werber; Patricia Heyn; Nadezdaa Kosyakova; Thomas Liehr; Heidemarie Neitzel; Kateryna Konrat; Christiane Bommer; Carola Dietrich; Anna Rajab; Richard Reinhardt; Stefan Mundlos; Tom H. Lindner; Katrin Hoffmann

The linkage of disease gene mapping with DNA sequencing is an essential strategy for defining the genetic basis of a disease. New massively parallel sequencing procedures will greatly facilitate this process, although enrichment for the target region before sequencing remains necessary. For this step, various DNA capture approaches have been described that rely on sequence-defined probe sets. To avoid making assumptions on the sequences present in the targeted region, we accessed specific cytogenetic regions in preparation for next-generation sequencing. We directly microdissected the target region in metaphase chromosomes, amplified it by degenerate oligonucleotide-primed PCR, and obtained sufficient material of high quality for high-throughput sequencing. Sequence reads could be obtained from as few as six chromosomal fragments. The power of cytogenetic enrichment followed by next-generation sequencing is that it does not depend on earlier knowledge of sequences in the region being studied. Accordingly, this method is uniquely suited for situations in which the sequence of a reference region of the genome is not available, including population-specific or tumor rearrangements, as well as previously unsequenced genomic regions such as centromeres.


European Journal of Human Genetics | 2009

HPGD mutations cause cranioosteoarthropathy but not autosomal dominant digital clubbing

Wenke Seifert; Julia Beninde; Katrin Hoffmann; Tom H. Lindner; Christian Bassir; Fuat Aksu; Christoph Hübner; Nienke E Verbeek; Stefan Mundlos; Denise Horn

Cranio-osteoarthropathy, clinically classified as a variant of primary hypertrophic osteoarthropathy, is a very rare autosomal-recessive condition characterized by delayed closure of the cranial sutures and fontanels, digital clubbing, arthropathy, and periostosis. Recently, mutations in the gene HPGD, which encodes the NAD+-dependent 15-hydroxyprostaglandin dehydrogenase, were reported in four families affected with primary hypertrophic osteoarthropathy and one family with autosomal-recessive isolated nail clubbing. We report the clinical and molecular findings in four patients from two families affected with cranio-osteoarthropathy and one family with isolated, autosomal dominant digital clubbing. Genome-wide homozygosity mapping identified a locus for cranio-osteoarthropathy harboring the HPGD gene in one affected family. We detected two novel homozygous mutations in HPGD in these families: a missense mutation affecting the NAD+ binding motif and a frameshift mutation. The clinical presentation in our patients was variable. Digital clubbing and hyperhidrosis were present in all cases. Delayed closure of the cranial sutures and fontanels, periostosis, and arthropathy were not consistent clinical features. No HPGD mutation was detected in a familial case of autosomal dominant isolated digital clubbing. The failure to identify any mutation in a family with an autosomal dominant type of isolated digital clubbing suggests that HPGD is not the major gene for this condition.

Collaboration


Dive into the Tom H. Lindner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Schulze

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cornelia Petzold

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nancy J. Cox

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge