Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tom J. Little is active.

Publication


Featured researches published by Tom J. Little.


Evolution | 2001

GENETIC VARIATION IN A HOST-PARASITE ASSOCIATION: POTENTIAL FOR COEVOLUTION AND FREQUENCY-DEPENDENT SELECTION

Hans Joachim Carius; Tom J. Little; Dieter Ebert

Abstract.— Models of host‐parasite coevolution assume the presence of genetic variation for host resistance and parasite infectivity, as well as genotype‐specific interactions. We used the freshwater crustacean Daphnia magna and its bacterial microparasite Pasteuria ramosa to study genetic variation for host susceptibility and parasite infectivity within each of two populations. We sought to answer the following questions: Do host clones differ in their susceptibility to parasite isolates? Do parasite isolates differ in their ability to infect different host clones? Are there host clone‐parasite isolate interactions? The analysis revealed considerable variation in both host resistance and parasite infectivity. There were significant host clone‐parasite isolate interactions, such that there was no single host clone that was superior to all other clones in the resistance to every parasite isolate. Likewise, there was no parasite isolate that was superior to all other isolates in infectivity to every host clone. This form of host clone‐parasite isolate interaction indicates the potential for coevolution based on frequency‐dependent selection. Infection success of original host clone‐parasite isolate combinations (i.e., those combinations that were isolated together) was significantly higher than infection success of novel host clone‐parasite isolate combinations (i.e., those combinations that were created in the laboratory). This finding is consistent with the idea that parasites track specific host genotypes under natural conditions. In addition, correspondence analysis revealed that some host clones, although distinguishable with neutral genetic markers, were susceptible to the same set of parasite isolates and thus probably shared resistance genes.


Current Biology | 2003

Maternal Transfer of Strain-Specific Immunity in an Invertebrate

Tom J. Little; Benjamin O'Connor; Kathryn A. Watt; Andrew F. Read

The most celebrated component of the vertebrate immune system is the acquired response in which memory cells established during primary infection enhance the proliferation of antibodies during secondary infection. Additionally, the strength of vertebrate acquired immune responses varies dramatically depending on the infecting pathogen species or on the pathogen genotype within species. Because invertebrates lack the T-cell receptors and Major Histocompatibility Complex (MHC) molecules that mediate vertebrate adaptive immune responses, they are thought to lack adaptive immunity and be relatively unspecific in their interactions with pathogens. With only innate immunity, invertebrate hosts are believed to be nai;ve at each new encounter with pathogens. Nevertheless, some forms of facultative immunity appear to be important in insects; some individuals have enhanced immunity due to population density, and some social insects benefit when their nest-mates have been exposed to a pathogen or pathogen mimic (; see for a predation example.) Here we provide evidence for acquired strain-specific immunity in the crustacean Daphnia magna infected with the pathogenic bacteria Pasteuria ramosa. Specifically, the fitness of hosts was enhanced when challenged with a bacterial strain their mother had experienced relative to cases when mother and offspring were challenged with different strains.


Philosophical Transactions of the Royal Society B | 2009

Immunity in a variable world.

Brian P. Lazzaro; Tom J. Little

Immune function is likely to be a critical determinant of an organisms fitness, yet most natural animal and plant populations exhibit tremendous genetic variation for immune traits. Accumulating evidence suggests that environmental heterogeneity may retard the long-term efficiency of natural selection and even maintain polymorphism, provided alternative host genotypes are favoured under different environmental conditions. ‘Environment’ in this context refers to abiotic factors such as ambient temperature or availability of nutrient resources, genetic diversity of pathogens or competing physiological demands on the host. These factors are generally controlled in laboratory experiments measuring immune performance, but variation in them is likely to be very important in the evolution of resistance to infection. Here, we review some of the literature emphasizing the complexity of natural selection on immunity. Our aim is to describe how environmental and genetic heterogeneities, often excluded from experimentation as ‘noise’, may determine the evolutionary potential of populations or the potential for interacting species to coevolve.


Nature Immunology | 2005

Invertebrate immunity and the limits of mechanistic immunology.

Tom J. Little; Dan Hultmark; Andrew F. Read

Rapid progress is being made in elucidating the molecular mechanisms involved in invertebrate immunity. This search for molecules runs the risk of missing important phenomena. In vertebrates, acquired protection and pathogen-specific responses were demonstrated experimentally long before the mechanisms responsible were elucidated. Without analogous experiments, mechanism-driven work may not demonstrate the full richness of invertebrate immunity.


Evolution | 2005

HOST-PARASITE AND GENOTYPE-BY-ENVIRONMENT INTERACTIONS: TEMPERATURE MODIFIES POTENTIAL FOR SELECTION BY A STERILIZING PATHOGEN

Suzanne E. Mitchell; Emily S. Rogers; Tom J. Little; Andrew F. Read

Abstract Parasite‐mediated selection is potentially of great importance in modulating genetic diversity. Genetic variation for resistance, the fuel for natural selection, appears to be common in host‐parasite interactions, but responses to selection are rarely observed. In the present study, we tested whether environmental variation could mediate infection and determine evolutionary outcomes. Temperature was shown to dramatically alter the potential for parasite‐mediated selection in two independent laboratory infection experiments at four temperatures. The bacterial parasite, Pasteuria ramosa, was extremely virulent at 20d̀C and 25d̀C, sterilizing its host, Daphnia magna, so that females often never produced a single brood. However, at 10d̀C and 15d̀C, the host‐parasite interaction was much more benign, as nearly all females produced broods before becoming sterile. This association between virulence and temperature alone could stabilize coexistence and lead to the maintenance of diversity, because it would weaken parasite‐mediated selection during parts of the season. Additionally, highly significant genotype‐by‐environment interactions were found, with changes in clone rank order for infection rates at different temperatures. Our results clearly show that the outcome of parasite‐mediated selection in this system is strongly context dependent.


The American Naturalist | 2004

The Evolution of Virulence When Parasites Cause Host Castration and Gigantism

Dieter Ebert; Hans Joachim Carius; Tom J. Little; Ellen Decaestecker

It has been suggested that the harm parasites cause to their hosts is an unavoidable consequence of parasite reproduction with costs not only for the host but also for the parasite. Castrating parasites are thought to minimize their costs by reducing host fecundity, which may minimize the chances of killing both host and parasite prematurely. We conducted a series of experiments to understand the evolution of virulence of a castrating bacterium in the planktonic crustacean Daphnia magna. By manipulating food levels during the infection of D. magna with the bacterium Pasteuria ramosa, we showed that both antagonists are resource‐limited and that a negative correlation between host and parasite reproduction exists, indicating resource competition among the antagonists. Pasteuria ramosa also induces enhanced growth of its hosts (gigantism), which we found to be negatively correlated with host fecundity but positively correlated with parasite reproduction. Because infected hosts never recovered from infections, we concluded that gigantism is beneficial only for the parasite. Hosts, however, have evolved counteradaptations. We showed that infected hosts have enhanced reproduction before castration. This shift to earlier reproduction increases overall host fecundity and compromises parasite reproduction. Finally, we showed that this resource conflict is subject to genetic variation among host and parasite genotypes within a population and is therefore likely to be an important force in the coevolution of virulence in this system. A verbal model is presented and suggests that the adaptive value of gigantism is to store host resources, which are liberated after parasitic castration for later use by the growing parasite. This hypothesis assumes that infections are long lasting, that is, that they have a high life expectancy.


PLOS Biology | 2006

Empirical support for optimal virulence in a castrating parasite.

Knut Helge Jensen; Tom J. Little; Arne Skorping; Dieter Ebert

The trade-off hypothesis for the evolution of virulence predicts that parasite transmission stage production and host exploitation are balanced such that lifetime transmission success (LTS) is maximised. However, the experimental evidence for this prediction is weak, mainly because LTS, which indicates parasite fitness, has been difficult to measure. For castrating parasites, this simple model has been modified to take into account that parasites convert host reproductive resources into transmission stages. Parasites that kill the host too early will hardly benefit from these resources, while postponing the killing of the host results in diminished returns. As predicted from optimality models, a parasite inducing castration should therefore castrate early, but show intermediate levels of virulence, where virulence is measured as time to host killing. We studied virulence in an experimental system where a bacterial parasite castrates its host and produces spores that are not released until after host death. This permits estimating the LTS of the parasite, which can then be related to its virulence. We exposed replicate individual Daphnia magna (Crustacea) of one host clone to the same amount of bacterial spores and followed individuals until their death. We found that the parasite shows strong variation in the time to kill its host and that transmission stage production peaks at an intermediate level of virulence. A further experiment tested for the genetic basis of variation in virulence by comparing survival curves of daphniids infected with parasite spores obtained from early killing versus late killing infections. Hosts infected with early killer spores had a significantly higher death rate as compared to those infected with late killers, indicating that variation in time to death was at least in part caused by genetic differences among parasites. We speculate that the clear peak in lifetime reproductive success at intermediate killing times may be caused by the exceptionally strong physiological trade-off between host and parasite reproduction. This is the first experimental study to demonstrate that the production of propagules is highest at intermediate levels of virulence and that parasite genetic variability is available to drive the evolution of virulence in this system.


Molecular Biology and Evolution | 2008

The Dscam Homologue of the Crustacean Daphnia Is Diversified by Alternative Splicing Like in Insects

Daniela Brites; Seanna J. McTaggart; Krystalynne Morris; Jobriah E. Anderson; Kelley Thomas; Isabelle Colson; Thomas Fabbro; Tom J. Little; Dieter Ebert; Louis Du Pasquier

In insects, the homologue of the Down syndrome cell adhesion molecule (Dscam) is a unique case of a single-locus gene whose expression has extensive somatic diversification in both the nervous and immune systems. How this situation evolved is best understood through comparative studies. We describe structural, expression, and evolutionary aspects of a Dscam homolog in 2 species of the crustacean Daphnia. The Dscam of Daphnia generates up to 13,000 different transcripts by the alternative splicing of variable exons. This extends the taxonomic range of a highly diversified Dscam beyond the insects. Additionally, we have identified 4 alternative forms of the cytoplasmic tail that generate isoforms with or without inhibitory or activating immunoreceptor tyrosine-based motifs (ITIM and ITAM respectively), something not previously reported in insects Dscam. In Daphnia, we detected exon usage variability in both the brain and hemocytes (the effector cells of immunity), suggesting that Dscam plays a role in the nervous and immune systems of crustaceans, as it does in insects. Phylogenetic analysis shows a high degree of amino acid conservation between Daphnia and insects except in the alternative exons, which diverge greatly between these taxa. Our analysis shows that the variable exons diverged before the split of the 2 Daphnia species and is in agreement with the nearest-neighbor model for the evolution of the alternative exons. The genealogy of the Dscam gene family from vertebrates and invertebrates confirmed that the highly diversified form of the gene evolved from a nondiversified form before the split of insects and crustaceans.


Journal of Evolutionary Biology | 2002

The evolutionary significance of parasitism: do parasite-driven genetic dynamics occur ex silico?

Tom J. Little

It has long been recognized that reciprocal antagonism might lock host and parasite populations into a process of constant change, adapting and reacting in open‐ended coevolution. A significant body of theory supports this intuition: dynamic genetic polymorphisms are a common outcome of computer simulations of host–parasite coevolution. These in silico experiments have also shown that dynamical interactions could be responsible for high levels of genetic diversity in host populations, and even be the principle determinant of rates of genetic recombination and sexuality. The evolutionary significance of parasitism depends on the strength and prevalence of parasite‐mediated selection in nature. Here I appraise whether parasitism is a pervasive agent of evolutionary change by detailing empirical evidence for selection. Although there is considerable evidence of genetic variation for resistance, and hence the potential for selection, direct observation of parasite‐driven genetic change is lacking.


PLOS Pathogens | 2010

The Coevolution of Virulence: Tolerance in Perspective

Tom J. Little; David M. Shuker; Troy Day; Andrea L. Graham

Coevolutionary interactions, such as those between host and parasite, predator and prey, or plant and pollinator, evolve subject to the genes of both interactors. It is clear, for example, that the evolution of pollination strategies can only be understood with knowledge of both the pollinator and the pollinated. Studies of the evolution of virulence, the reduction in host fitness due to infection, have nonetheless tended to focus on parasite evolution. Host-centric approaches have also been proposed—for example, under the rubric of “tolerance”, the ability of hosts to minimize virulence without necessarily minimizing parasite density. Within the tolerance framework, however, there is room for more comprehensive measures of host fitness traits, and for fuller consideration of the consequences of coevolution. For example, the evolution of tolerance can result in changed selection on parasite populations, which should provoke parasite evolution despite the fact that tolerance is not directly antagonistic to parasite fitness. As a result, consideration of the potential for parasite counter-adaptation to host tolerance—whether evolved or medially manipulated—is essential to the emergence of a cohesive theory of biotic partnerships and robust disease control strategies.

Collaboration


Dive into the Tom J. Little's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ellen Decaestecker

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge