Tom La
Murdoch University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tom La.
Journal of Clinical Microbiology | 2003
Tom La; Nyree D. Phillips; D.J. Hampson
ABSTRACT A duplex PCR (D-PCR) amplifying portions of the Brachyspira hyodysenteriae NADH oxidase gene and the B. pilosicoli 16S rRNA gene was developed and then tested on DNA extracted from 178 porcine fecal samples. The feces also underwent anaerobic culture and species-specific PCRs. Fecal extraction-D-PCR detected seven additional samples containing B. hyodysenteriae and five more containing B. pilosicoli.
PLOS ONE | 2009
M. Bellgard; Phatthanaphong Wanchanthuek; Tom La; K. Ryan; P. Moolhuijzen; Zayed Albertyn; Babak Shaban; Yair Motro; David S. Dunn; D. Schibeci; A. Hunter; Roberto A. Barrero; Nyree D. Phillips; D.J. Hampson
Brachyspira hyodysenteriae is an anaerobic intestinal spirochete that colonizes the large intestine of pigs and causes swine dysentery, a disease of significant economic importance. The genome sequence of B. hyodysenteriae strain WA1 was determined, making it the first representative of the genus Brachyspira to be sequenced, and the seventeenth spirochete genome to be reported. The genome consisted of a circular 3,000,694 base pair (bp) chromosome, and a 35,940 bp circular plasmid that has not previously been described. The spirochete had 2,122 protein-coding sequences. Of the predicted proteins, more had similarities to proteins of the enteric Escherichia coli and Clostridium species than they did to proteins of other spirochetes. Many of these genes were associated with transport and metabolism, and they may have been gradually acquired through horizontal gene transfer in the environment of the large intestine. A reconstruction of central metabolic pathways identified a complete set of coding sequences for glycolysis, gluconeogenesis, a non-oxidative pentose phosphate pathway, nucleotide metabolism, lipooligosaccharide biosynthesis, and a respiratory electron transport chain. A notable finding was the presence on the plasmid of the genes involved in rhamnose biosynthesis. Potential virulence genes included those for 15 proteases and six hemolysins. Other adaptations to an enteric lifestyle included the presence of large numbers of genes associated with chemotaxis and motility. B. hyodysenteriae has diverged from other spirochetes in the process of accommodating to its habitat in the porcine large intestine.
Journal of Clinical Microbiology | 2001
Andrew S. J. Mikosza; Tom La; W. Bastiaan de Boer; D.J. Hampson
ABSTRACT DNA from gastrointestinal biopsy specimens from 28 Australian patients with histologic evidence of intestinal spirochetosis (IS) was subjected to PCRs to amplify segments of the 16S rRNA and NADH oxidase genes of Brachyspira aalborgi and Brachyspira (Serpulina) pilosicoli. B. aalborgi was identified in specimens from 24 (85.7%) patients and B. pilosicoli in those from 4 (14.3%) patients (2 of whom were also positive forB. aalborgi). For two patients, no product was amplified. This study demonstrates that B. aalborgi is much more commonly involved in histologically identified IS in Australian patients than is B. pilosicoli. This is the first report of amplification of B. pilosicoli DNA from humans with IS.
Veterinary Microbiology | 2000
D.J. Hampson; I.D. Robertson; Tom La; S.L. Oxberry; D.W. Pethick
The purpose of this study was to determine whether methods used to control swine dysentery (SD), caused by the intestinal spirochaete Brachyspira (Serpulina) hyodysenteriae, would also be effective in controlling porcine intestinal spirochaetosis (PIS) caused by the related spirochaete Brachyspira (Serpulina) pilosicoli. Weaner pigs in Groups I (n=8) and II (n=6) received a standard weaner pig diet based on wheat and lupins, whilst Group III (n=6) received an experimental diet based on cooked white rice and animal protein. Pigs in Group II were vaccinated intramuscularly twice at a 3-week-interval with a formalinised bacterin made from B. pilosicoli porcine strain 95/1000 resuspended in Freunds incomplete adjuvant. Eleven days later pigs in all groups were infected orally with 10(10) cells of strain 95/1000 on three successive days. One control pig in Group I developed acute diarrhoea, and at post-mortem had a severe erosive colitis with end-on attachment of spirochaetes to the colonic epithelium. All other pigs developed transient mild diarrhoea and had moderate patchy colitis at post-mortem 3 weeks later. B. pilosicoli was isolated from the faeces of all pigs, except for one fed rice, and was isolated from the mesenteric nodes of three pigs from Group I and from one vaccinated pig in Group II. Consumption of the rice-based diet, but not vaccination, delayed and significantly (p<0.001) reduced the onset of faecal excretion of B. pilosicoli after experimental challenge. Vaccination induced a primary and secondary serological response to B. pilosicoli, as measured using sonicated whole cells of strain 95/1000 as an ELISA plate coating antigen. Antibody titres in the vaccinated pigs then declined, despite intestinal colonisation by B. pilosicoli. Both groups of unvaccinated animals also failed to develop a post-infection increase in circulating antibody titres.
PLOS ONE | 2010
Phatthanaphong Wanchanthuek; M. Bellgard; Tom La; K. Ryan; P. Moolhuijzen; Brett Chapman; Michael Black; D. Schibeci; A. Hunter; Roberto A. Barrero; Nyree D. Phillips; D.J. Hampson
Background The anaerobic spirochete Brachyspira pilosicoli colonizes the large intestine of various species of birds and mammals, including humans. It causes “intestinal spirochetosis”, a condition characterized by mild colitis, diarrhea and reduced growth. This study aimed to sequence and analyse the bacterial genome to investigate the genetic basis of its specialized ecology and virulence. Methodology/Principal Findings The genome of B. pilosicoli 95/1000 was sequenced, assembled and compared with that of the pathogenic Brachyspira hyodysenteriae and a near-complete sequence of Brachyspira murdochii. The B. pilosicoli genome was circular, composed of 2,586,443 bp with a 27.9 mol% G+C content, and encoded 2,338 genes. The three Brachyspira species shared 1,087 genes and showed evidence of extensive genome rearrangements. Despite minor differences in predicted protein functional groups, the species had many similar features including core metabolic pathways. Genes distinguishing B. pilosicoli from B. hyodysenteriae included those for a previously undescribed bacteriophage that may be useful for genetic manipulation, for a glycine reductase complex allowing use of glycine whilst protecting from oxidative stress, and for aconitase and related enzymes in the incomplete TCA cycle, allowing glutamate synthesis and function of the cycle during oxidative stress. B. pilosicoli had substantially fewer methyl-accepting chemotaxis genes than B. hyodysenteriae and hence these species are likely to have different chemotactic responses that may help to explain their different host range and colonization sites. B. pilosicoli lacked the gene for a new putative hemolysin identified in B. hyodysenteriae WA1. Both B. pilosicoli and B. murdochii lacked the rfbBADC gene cluster found on the B. hyodysenteriae plasmid, and hence were predicted to have different lipooligosaccharide structures. Overall, B. pilosicoli 95/1000 had a variety of genes potentially contributing to virulence. Conclusions/Significance The availability of the complete genome sequence of B. pilosicoli 95/1000 will facilitate functional genomics studies aimed at elucidating host-pathogen interactions and virulence.
Journal of Clinical Microbiology | 2008
Anneke Feberwee; D.J. Hampson; Nyree D. Phillips; Tom La; Harold M. J. F. van der Heijden; G.J. Wellenberg; R. Marius Dwars; W. J. M. Landman
ABSTRACT Cecal samples from laying chickens from 25 farms with a history of decreased egg production, diarrhea, and/or increased feed conversion ratios were examined for anaerobic intestinal spirochetes of the genus Brachyspira. Seventy-three samples positive in an immunofluorescence assay for Brachyspira species were further examined using selective anaerobic culture, followed by phenotypic analysis, species-specific PCRs (for Brachyspira hyodysenteriae, B. intermedia, and B. pilosicoli), and a Brachyspira genus-specific PCR with sequencing of the partial 16S rRNA gene products. Brachyspira cultures were obtained from all samples. Less than half of the isolates could be identified to the species level on the basis of their biochemical phenotypes, while all but four isolates (5.2%) were speciated by using PCR and sequencing of DNA extracted from the bacteria. Different Brachyspira spp. were found within a single flock and also in cultures from single chickens, emphasizing the need to obtain multiple samples when investigating outbreaks of avian intestinal spirochetosis. The most commonly detected spirochetes were the pathogenic species B. intermedia and B. pilosicoli. The presumed nonpathogenic species B. innocens, B. murdochii, and the proposed “B. pulli” also were identified. Pathogenic B. alvinipulli was present in two flocks, and this is the first confirmed report of B. alvinipulli in chickens outside the United States. Brachyspira hyodysenteriae, the agent of swine dysentery, also was identified in samples from three flocks. This is the first confirmed report of natural infection of chickens with B. hyodysenteriae. Experimental infection studies are required to assess the pathogenic potential of these B. hyodysenteriae isolates.
Emerging Infectious Diseases | 2006
D.J. Hampson; S.L. Oxberry; Tom La
To the Editor: Anaerobic intestinal spirochetes of the genus Brachyspira colonize the large intestine (1). Most Brachyspira species have a restricted host range, whereas Brachyspira (formerly Serpulina) pilosicoli colonizes a variety of animal and bird species and humans. B. pilosicoli is an important colonic pathogen of pigs and chickens (2). It occurs at high prevalence rates in humans in developing countries and in male homosexuals and HIV-positive persons in industrialized countries (3). Its potential as a human pathogen was emphasized after its identification in the bloodstream of a series of debilitated persons (4).
Veterinary Microbiology | 2009
Yair Motro; Tom La; M. Bellgard; David S. Dunn; Nyree D. Phillips; D.J. Hampson
VSH-1 is an unusual prophage-like gene transfer agent (GTA) that has been described in the intestinal spirochaete Brachyspira hyodysenteriae. The GTA does not self-propagate, but it assembles into a virus-like particle and transfers random 7.5kb fragments of host DNA to other B. hyodysenteriae cells. To date the GTA VSH-1 has only been analysed in B. hyodysenteriae strain B204, in which 11 late function genes encoding prophage capsid, tail and lysis elements have been described. The aim of the current study was to look for these 11 genes in the near-complete genomes of B. hyodysenteriae WA1, B. pilosicoli 95/1000 and B. intermedia HB60. All 11 genes were found in the three new strains. The GTA genes in WA1 and 95/1000 were contiguous, whilst some of those in HB60 were not-although in all three strains some gene rearrangements were present. A new predicted open reading frame with potential functional importance was found in a consistent position associated with all four GTAs, located between the genes for head protein Hvp24 and tail protein Hvp53, overlapping with the hvp24 sequence. Differences in the nucleotide and predicted amino acid sequences of the GTA genes in the spirochaete strains were consistent with the overall genetic distances between the strains. Hence the GTAs in the two B. hyodysenteriae strains were considered to be strain specific variants, and were designated GTA/Bh-B204 and GTA/Bh-WA1 respectively. The GTAs in the strains of B. intermedia and B. pilosicoli were designated GTA/Bint-HB60 and GTA/Bp-95/1000 respectively. Further work is required to determine the extent to which these GTAs can transfer host genes between different Brachyspira species and strains.
Letters in Applied Microbiology | 2006
Tom La; A.M. Collins; Nyree D. Phillips; A. Oksa; D.J. Hampson
Aims: To develop an assay to simultaneously detect Lawsonia intracellularis, Brachyspira hyodysenteriae and Brachyspira pilosicoli in pig faeces.
Veterinary Microbiology | 2000
B.J. Lee; Tom La; Andrew S. J. Mikosza; D.J. Hampson
A gene encoding a 30kDa outer envelope protein of the intestinal spirochaete Brachyspira (Serpulina) hyodysenteriae, was cloned and expressed in Escherichia coli strain XLOLR. Five phagemids containing DNA inserts encoding the protein were established and one clone (pSHA) was sequenced. An 816bp hypothetical open reading frame (ORF) was identified, with a potential ribosome binding site (AGGAG), and putative -10 (TATAAT) and -35 (TTGAAA) promoter regions upstream from the ATG start of the ORF. A 12bp inverted repeat sequence, possibly serving as a transcription terminator, was identified downstream from the TAA stop codon. Analysis of the amino acid sequence identified a 19 residue hydrophobic signal peptide, incorporating a potential signal peptidase cleavage site and membrane lipoprotein lipid attachment site. Further analysis of the amino acid usage of this lipoprotein, designated BmpB, showed its possible outer membrane localisation. Comparison of the gene encoding the lipoprotein, bmpB, with GenBank nucleotide sequences showed that it has homology with the gene (plp3) encoding Plp3, an outer membrane lipoprotein of Pasteurella haemolytica (54% identity in 735bp). Comparison of the deduced amino acid sequence with the SWISS-PROT amino acid database revealed greatest homology with the outer membrane lipoproteins (Plp1, 2, 3) of P. haemolytica (34% identity in 242 aa, 37% identity in 250 aa, and 39% identity in 272 aa, respectively), and lipoproteins (rcsF and lipoprotein-28) of E. coli (40% identity in 267 aa and 36% identity in 263 aa, respectively). Three of the recombinant E. coli clones (pSHA, pSHD, and pSHE) were formalinised and used to immunise mice. A bacterin preparation of one recombinant E. coli clone (pSHA) was used to immunise pigs. Sera from these mice and pigs recognised the 30kDa lipoprotein in outer membrane preparations of B. hyodysenteriae, indicating the immunogenicity of recombinant BmpB. Sera from pigs naturally infected with B. hyodysenteriae also reacted with recombinant BmpB expressed in E. coli.