Tom Misteli
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tom Misteli.
Nature | 2002
Paola Scaffidi; Tom Misteli; Marco Bianchi
High mobility group 1 (HMGB1) protein is both a nuclear factor and a secreted protein. In the cell nucleus it acts as an architectural chromatin-binding factor that bends DNA and promotes protein assembly on specific DNA targets. Outside the cell, it binds with high affinity to RAGE (the receptor for advanced glycation end products) and is a potent mediator of inflammation. HMGB1 is secreted by activated monocytes and macrophages, and is passively released by necrotic or damaged cells. Here we report that Hmgb1-/- necrotic cells have a greatly reduced ability to promote inflammation, which proves that the release of HMGB1 can signal the demise of a cell to its neighbours. Apoptotic cells do not release HMGB1 even after undergoing secondary necrosis and partial autolysis, and thus fail to promote inflammation even if not cleared promptly by phagocytic cells. In apoptotic cells, HMGB1 is bound firmly to chromatin because of generalized underacetylation of histone and is released in the extracellular medium (promoting inflammation) if chromatin deacetylation is prevented. Thus, cells undergoing apoptosis are programmed to withhold the signal that is broadcast by cells that have been damaged or killed by trauma.
Nature | 2000
Robert D. Phair; Tom Misteli
The mammalian cell nucleus contains numerous sub-compartments, which have been implicated in essential processes such as transcription and splicing. The mechanisms by which nuclear compartments are formed and maintained are unclear. More fundamentally, it is not known how proteins move within the cell nucleus. We have measured the kinetic properties of proteins in the nucleus of living cells using photobleaching techniques. Here we show that proteins involved in diverse nuclear processes move rapidly throughout the entire nucleus. Protein movement is independent of energy, which indicates that proteins may use a passive mechanism of movement. Proteins rapidly associate and dissociate with nuclear compartments. Using kinetic modelling, we determined residence times and steady-state fluxes of molecules in two main nuclear compartments. These data show that many nuclear proteins roam the cell nucleus in vivo and that nuclear compartments are the reflection of the steady-state association/dissociation of its ‘residents’ with the nucleoplasmic space. Our observations have conceptual implications for understanding nuclear architecture and how nuclear processes are organized in vivo.
Nature | 2011
Poulikos I. Poulikakos; Yogindra Persaud; Manickam Janakiraman; Xiangju Kong; Charles Ng; Gatien Moriceau; Hubing Shi; Mohammad Atefi; Bjoern Titz; May Tal Gabay; Maayan Salton; Kimberly B. Dahlman; Madhavi Tadi; Jennifer A. Wargo; Keith T. Flaherty; Mark C. Kelley; Tom Misteli; Paul B. Chapman; Jeffrey A. Sosman; Thomas G. Graeber; Antoni Ribas; Roger S. Lo; Neal Rosen; David B. Solit
Activated RAS promotes dimerization of members of the RAF kinase family. ATP-competitive RAF inhibitors activate ERK signalling by transactivating RAF dimers. In melanomas with mutant BRAF(V600E), levels of RAS activation are low and these drugs bind to BRAF(V600E) monomers and inhibit their activity. This tumour-specific inhibition of ERK signalling results in a broad therapeutic index and RAF inhibitors have remarkable clinical activity in patients with melanomas that harbour mutant BRAF(V600E). However, resistance invariably develops. Here, we identify a new resistance mechanism. We find that a subset of cells resistant to vemurafenib (PLX4032, RG7204) express a 61-kDa variant form of BRAF(V600E), p61BRAF(V600E), which lacks exons 4–8, a region that encompasses the RAS-binding domain. p61BRAF(V600E) shows enhanced dimerization in cells with low levels of RAS activation, as compared to full-length BRAF(V600E). In cells in which p61BRAF(V600E) is expressed endogenously or ectopically, ERK signalling is resistant to the RAF inhibitor. Moreover, a mutation that abolishes the dimerization of p61BRAF(V600E) restores its sensitivity to vemurafenib. Finally, we identified BRAF(V600E) splicing variants lacking the RAS-binding domain in the tumours of six of nineteen patients with acquired resistance to vemurafenib. These data support the model that inhibition of ERK signalling by RAF inhibitors is dependent on levels of RAS–GTP too low to support RAF dimerization and identify a novel mechanism of acquired resistance in patients: expression of splicing isoforms of BRAF(V600E) that dimerize in a RAS-independent manner.
Cell | 2007
Tom Misteli
Genomes are more than linear sequences. In vivo they exist as elaborate physical structures, and their functional properties are strongly determined by their cellular organization. I discuss here the functional relevance of spatial and temporal genome organization at three hierarchical levels: the organization of nuclear processes, the higher-order organization of the chromatin fiber, and the spatial arrangement of genomes within the cell nucleus. Recent insights into the cell biology of genomes have overturned long-held dogmas and have led to new models for many essential cellular processes, including gene expression and genome stability.
Science | 2006
Paola Scaffidi; Tom Misteli
Mutations in the nuclear structural protein lamin A cause the premature aging syndrome Hutchinson-Gilford progeria (HGPS). Whether lamin A plays any role in normal aging is unknown. We show that the same molecular mechanism responsible for HGPS is active in healthy cells. Cell nuclei from old individuals acquire defects similar to those of HGPS patient cells, including changes in histone modifications and increased DNA damage. Age-related nuclear defects are caused by sporadic use, in healthy individuals, of the same cryptic splice site in lamin A whose constitutive activation causes HGPS. Inhibition of this splice site reverses the nuclear defects associated with aging. These observations implicate lamin A in physiological aging.
Science | 2010
Reini F Luco; Qun Pan; Kaoru Tominaga; Benjamin J. Blencowe; Olivia M. Pereira-Smith; Tom Misteli
Histones and Alternative Splicing Alternative splicing—the inclusion of different combinations of gene exons within a messenger RNA transcript—occurs in the majority of human genes and is regulated by basal and tissue-specific splicing factors, by transcription kinetics, and by chromatin structure. Luco et al. (p. 996, published online 4 February) analyzed the alternative splicing of the human fibroblast growth factor receptor 2 gene in tissue culture cells and found that inclusion of exon IIIb or IIIc was modulated by the levels of histone H3 lysine 36 trimethylation (H3-K36me3) and H3-K4me3. Histone H3-K36me3 enrichment correlated with binding of the chromatin protein, MRG15. The MRG15 protein in turn recruited the polypyrimidine tract–binding protein (PTB) splicing factor, which acts to repress alternative exon inclusion, thus establishing a direct link between histone modifications and the splicing machinery. Histone modifications regulate alternative splicing through physical cross talk with the splicing machinery. Alternative splicing of pre-mRNA is a prominent mechanism to generate protein diversity, yet its regulation is poorly understood. We demonstrated a direct role for histone modifications in alternative splicing. We found distinctive histone modification signatures that correlate with the splicing outcome in a set of human genes, and modulation of histone modifications causes splice site switching. Histone marks affect splicing outcome by influencing the recruitment of splicing regulators via a chromatin-binding protein. These results outline an adaptor system for the reading of histone marks by the pre-mRNA splicing machinery.
Nature Reviews Molecular Cell Biology | 2006
Eran Meshorer; Tom Misteli
Embryonic stem (ES) cells are unique in that they are pluripotent and have the ability to self-renew. The molecular mechanisms that underlie these two fundamental properties are largely unknown. We discuss how unique properties of chromatin in ES cells contribute to the maintenance of pluripotency and the determination of differentiation properties.
Cell | 2011
Reini F Luco; Mariano Alló; Ignacio E. Schor; Alberto R. Kornblihtt; Tom Misteli
Alternative splicing plays critical roles in differentiation, development, and disease and is a major source for protein diversity in higher eukaryotes. Analysis of alternative splicing regulation has traditionally focused on RNA sequence elements and their associated splicing factors, but recent provocative studies point to a key function of chromatin structure and histone modifications in alternative splicing regulation. These insights suggest that epigenetic regulation determines not only what parts of the genome are expressed but also how they are spliced.
Nature | 2000
Tom Misteli; Akash Gunjan; Robert Hock; Michael Bustin; David T. Brown
The linker histone H1 is believed to be involved in chromatin organization by stabilizing higher-order chromatin structure. Histone H1 is generally viewed as a repressor of transcription as it prevents the access of transcription factors and chromatin remodelling complexes to DNA. Determining the binding properties of histone H1 to chromatin in vivo is central to understanding how it exerts these functions. We have used photobleaching techniques to measure the dynamic binding of histone H1–GFP to unperturbed chromatin in living cells. Here we show that almost the entire population of H1–GFP is bound to chromatin at any one time; however, H1–GFP is exchanged continuously between chromatin regions. The residence time of H1–GFP on chromatin between exchange events is several minutes in both euchromatin and heterochromatin. In addition to the mobile fraction, we detected a kinetically distinct, less mobile fraction. After hyperacetylation of core histones, the residence time of H1–GFP is reduced, suggesting a higher rate of exchange upon chromatin remodelling. These results support a model in which linker histones bind dynamically to chromatin in a stop-and-go mode.
Cell | 2007
Lloyd C. Trotman; Xinjiang Wang; Andrea Alimonti; Zhenbang Chen; Julie Teruya-Feldstein; Haijuan Yang; Nikola P. Pavletich; Brett S. Carver; Carlos Cordon-Cardo; Hediye Erdjument-Bromage; Paul Tempst; Sung Gil Chi; Hyo Jong Kim; Tom Misteli; Xuejun Jiang; Pier Paolo Pandolfi
The PTEN tumor suppressor is frequently affected in cancer cells, and inherited PTEN mutation causes cancer-susceptibility conditions such as Cowden syndrome. PTEN acts as a plasma-membrane lipid-phosphatase antagonizing the phosphoinositide 3-kinase/AKT cell survival pathway. However, PTEN is also found in cell nuclei, but mechanism, function, and relevance of nuclear localization remain unclear. We show that nuclear PTEN is essential for tumor suppression and that PTEN nuclear import is mediated by its monoubiquitination. A lysine mutant of PTEN, K289E associated with Cowden syndrome, retains catalytic activity but fails to accumulate in nuclei of patient tissue due to an import defect. We identify this and another lysine residue as major monoubiquitination sites essential for PTEN import. While nuclear PTEN is stable, polyubiquitination leads to its degradation in the cytoplasm. Thus, we identify cancer-associated mutations of PTEN that target its posttranslational modification and demonstrate how a discrete molecular mechanism dictates tumor progression by differentiating between degradation and protection of PTEN.