Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tom Nijenhuis is active.

Publication


Featured researches published by Tom Nijenhuis.


Journal of Clinical Investigation | 2005

Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia.

Tom Nijenhuis; Volker Vallon; Annemiete W.C.M. van der Kemp; Johannes Loffing; Joost G.J. Hoenderop; René J. M. Bindels

Thiazide diuretics enhance renal Na+ excretion by blocking the Na+-Cl- cotransporter (NCC), and mutations in NCC result in Gitelman syndrome. The mechanisms underlying the accompanying hypocalciuria and hypomagnesemia remain debated. Here, we show that enhanced passive Ca2+ transport in the proximal tubule rather than active Ca2+ transport in distal convolution explains thiazide-induced hypocalciuria. First, micropuncture experiments in mice demonstrated increased reabsorption of Na+ and Ca2+ in the proximal tubule during chronic hydrochlorothiazide (HCTZ) treatment, whereas Ca2+ reabsorption in distal convolution appeared unaffected. Second, HCTZ administration still induced hypocalciuria in transient receptor potential channel subfamily V, member 5-knockout (Trpv5-knockout) mice, in which active distal Ca2+ reabsorption is abolished due to inactivation of the epithelial Ca2+ channel Trpv5. Third, HCTZ upregulated the Na+/H+ exchanger, responsible for the majority of Na+ and, consequently, Ca2+ reabsorption in the proximal tubule, while the expression of proteins involved in active Ca2+ transport was unaltered. Fourth, experiments addressing the time-dependent effect of a single dose of HCTZ showed that the development of hypocalciuria parallels a compensatory increase in Na+ reabsorption secondary to an initial natriuresis. Hypomagnesemia developed during chronic HCTZ administration and in NCC-knockout mice, an animal model of Gitelman syndrome, accompanied by downregulation of the epithelial Mg2+ channel transient receptor potential channel subfamily M, member 6 (Trpm6). Thus, Trpm6 downregulation may represent a general mechanism involved in the pathogenesis of hypomagnesemia accompanying NCC inhibition or inactivation.


Journal of The American Society of Nephrology | 2003

Localization and Regulation of the Epithelial Ca2+ Channel TRPV6 in the Kidney

Tom Nijenhuis; Joost G. J. Hoenderop; Annemiete W. C. M. van der Kemp; René J. M. Bindels

The family of epithelial Ca(2+) channels consists of two highly homologues members, TRPV5 and TRPV6, which constitute the apical Ca(2+) entry mechanism in active Ca(2+) (re)absorption in kidney and small intestine. In kidney, TRPV5 expression has been extensively studied, whereas TRPV6 localization and regulation has been largely confined to the small intestine. The present study investigated the renal distribution of TRPV6 and regulation by 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)). In mouse kidney, TRPV6 was detected by immunohistochemistry at the apical domain of the distal convoluted tubules (DCT2), connecting tubules (CNT), and cortical and medullary collecting ducts (CD). Furthermore, several putative vitamin D-responsive elements were detected upstream of the mouse TRPV6 start codon, and 1,25(OH)(2)D(3) treatment significantly increased renal TRPV6 mRNA and protein expression. In DCT2 and CNT, TRPV6 co-localizes with the other known Ca(2+) transport proteins, including TRPV5 and calbindin-D(28K). Together, these data suggest a role for TRPV6 in 1,25(OH)(2)D(3)-stimulated Ca(2+) reabsorption in these segments. Interestingly, distribution of TRPV6 extended to the CD, where it localized to the apical domain of principal and intercalated cells, which are not generally implicated in active Ca(2+) reabsorption. In addition, TRPV6 mRNA levels were quantified in a large set of tissues, and in the order of decreasing expression level were detected: prostate > stomach, brain > lung > duodenum, kidney, bone, cecum, heart > colon > skeletal muscle > pancreas. Therefore, additional physiologic functions for TRPV6 are feasible. In conclusion, TRPV6 is expressed along the apical domain of DCT2, CNT, and CD, where TRPV6 expression is positively regulated by 1,25(OH)(2)D(3).


Journal of The American Society of Nephrology | 2004

Downregulation of Ca 2 and Mg 2 Transport Proteins in the Kidney Explains Tacrolimus (FK506)-Induced Hypercalciuria and Hypomagnesemia

Tom Nijenhuis; Joost G. J. Hoenderop; René J. M. Bindels

FK506 (tacrolimus) and dexamethasone are potent immunosuppressants known to induce significant side effects on mineral homeostasis, including hypercalciuria and hypomagnesemia. However, the underlying molecular mechanisms remain unknown. The present study investigated the effects of FK506 and dexamethasone on the expression of proteins involved in active Ca(2+) reabsorption: the epithelial Ca(2+) channel TRPV5 and the cytosolic Ca(2+)-binding protein calbindin-D(28K). In addition, the renal expression of the putative Mg(2+) channel TRPM6, suggested to be involved in transcellular Mg(2+) reabsorption, was determined. Administration of FK506 to rats by daily oral gavage during 7 d significantly enhanced the urinary excretion of Ca(2+) and Mg(2+) and induced a significant hypomagnesemia. FK506 significantly decreased the renal mRNA expression of TRPV5 (62 +/- 7% relative to controls), calbindin-D(28K) (9 +/- 1%), and TRPM6 (52 +/- 8%), as determined by real-time quantitative PCR analysis. Furthermore, semiquantitative immunohistochemistry showed reduced renal protein abundance of TRPV5 (24 +/- 5%) and calbindin-D(28K) (29 +/- 4%), altogether suggesting that downregulation of these transport proteins is responsible for the FK506-induced Ca(2+) and Mg(2+) wasting. In contrast, dexamethasone significantly enhanced renal TRPV5 (150 +/- 15%), calbindin-D(28K) (177 +/- 23%), and TRPM6 (156 +/- 20%) mRNA levels along with TRPV5 (211 +/- 8%) and calbindin-D(28K) (176 +/- 5%) protein abundance in the presence of significantly increased Ca(2+) and Mg(2+) excretion. This indicated that these proteins are directly or indirectly regulated by dexamethasone. In conclusion, FK506 and dexamethasone induce renal Ca(2+) and Mg(2+) wasting, albeit by different mechanisms. Downregulation of specific Ca(2+) and Mg(2+) transport proteins provides a molecular mechanism for FK506-induced hypercalciuria and hypomagnesemia, whereas dexamethasone positively regulates these proteins.


Journal of The American Society of Nephrology | 2006

Acid-Base Status Determines the Renal Expression of Ca2+ and Mg2+ Transport Proteins

Tom Nijenhuis; Kirsten Y. Renkema; Joost G. J. Hoenderop; René J. M. Bindels

Chronic metabolic acidosis results in renal Ca2+ and Mg2+ wasting, whereas chronic metabolic alkalosis is known to exert the reverse effects. It was hypothesized that these adaptations are mediated at least in part by the renal Ca2+ and Mg2+ transport proteins. The aim of this study, therefore, was to determine the effect of systemic acid-base status on renal expression of the epithelial Ca2+ channel TRPV5, the Ca2+-binding protein calbindin-D28K, and the epithelial Mg2+ channel TRPM6 in relation to Ca2+ and Mg2+ excretion. Chronic metabolic acidosis that was induced by NH4Cl loading or administration of the carbonic anhydrase inhibitor acetazolamide for 6 d enhanced calciuresis accompanied by decreased renal TRPV5 and calbindin-D28K mRNA and protein abundance in wild-type mice. In contrast, metabolic acidosis did not affect Ca2+ excretion in TRPV5 knockout (TRPV5-/-) mice, in which active Ca2+ reabsorption is effectively abolished. This demonstrates that downregulation of renal Ca2+ transport proteins is responsible for the hypercalciuria. Conversely, chronic metabolic alkalosis that was induced by NaHCO3 administration for 6 d increased the expression of Ca2+ transport proteins accompanied by diminished urine Ca2+ excretion in wild-type mice. However, this Ca2+-sparing action persisted in TRPV5-/- mice, suggesting that additional mechanisms apart from upregulation of active Ca2+ transport contribute to the hypocalciuria. Furthermore, chronic metabolic acidosis decreased renal TRPM6 expression, increased Mg2+ excretion, and decreased serum Mg2+ concentration, whereas chronic metabolic alkalosis resulted in the exact opposite effects. In conclusion, these data suggest that regulation of Ca2+ and Mg2+ transport proteins contributes importantly to the effects of acid-base status on renal divalent handling.


American Journal of Pathology | 2011

Angiotensin II contributes to podocyte injury by increasing TRPC6 expression via an NFAT-mediated positive feedback signaling pathway.

Tom Nijenhuis; Alexis Sloan; Joost G.J. Hoenderop; Jan Flesche; Harry van Goor; Andreas D. Kistler; Marinka Bakker; René J. M. Bindels; Rudolf A. de Boer; Clemens C. Möller; Inge Hamming; Gerjan Navis; Jack F.M. Wetzels; J.H.M. Berden; Jochen Reiser; Christian Faul; Johan van der Vlag

The transient receptor potential channel C6 (TRPC6) is a slit diaphragm-associated protein in podocytes involved in regulating glomerular filter function. Gain-of-function mutations in TRPC6 cause hereditary focal segmental glomerulosclerosis (FSGS), and several human acquired proteinuric diseases show increased glomerular TRPC6 expression. Angiotensin II (AngII) is a key contributor to glomerular disease and may regulate TRPC6 expression in nonrenal cells. We demonstrate that AngII regulates TRPC6 mRNA and protein levels in cultured podocytes and that AngII infusion enhances glomerular TRPC6 expression in vivo. In animal models for human FSGS (doxorubicin nephropathy) and increased renin-angiotensin system activity (Ren2 transgenic rats), glomerular TRPC6 expression was increased in an AngII-dependent manner. TRPC6 expression correlated with glomerular damage markers and glomerulosclerosis. We show that the regulation of TRPC6 expression by AngII and doxorubicin requires TRPC6-mediated Ca(2+) influx and the activation of the Ca(2+)-dependent protein phosphatase calcineurin and its substrate nuclear factor of activated T cells (NFAT). Accordingly, calcineurin inhibition by cyclosporine decreased TRPC6 expression and reduced proteinuria in doxorubicin nephropathy, whereas podocyte-specific inducible expression of a constitutively active NFAT mutant increased TRPC6 expression and induced severe proteinuria. Our findings demonstrate that the deleterious effects of AngII on podocytes and its pathogenic role in glomerular disease involve enhanced TRPC6 expression via a calcineurin/NFAT positive feedback signaling pathway.


Pflügers Archiv: European Journal of Physiology | 2005

TRPV5 and TRPV6 in Ca(2+) (re)absorption: regulating Ca(2+) entry at the gate.

Tom Nijenhuis; Joost G.J. Hoenderop; René J. M. Bindels

Many physiological functions rely on the exact maintenance of body Ca2+ balance. Therefore, the extracellular Ca2+ concentration is tightly regulated by the concerted actions of intestinal Ca2+ absorption, exchange of Ca2+ to and from bone, and renal Ca2+ reabsorption. Renal distal convoluted and connecting tubular cells as well as duodenal epithelial cells are unique in their ability to mediate transcellular (re)absorption of Ca2+ at large and highly variable rates. Two members of the transient receptor potential (TRP) superfamily, TRP vanilloid (TRPV)5 and TRPV6, are specialized epithelial Ca2+ channels responsible for the critical Ca2+ entry step in transcellular Ca2+ (re)absorption in intestine and kidney, respectively. Because transcellular Ca2+ transport is fine-tuned to the body’s specific requirements, regulation of the transmembrane Ca2+ flux through TRPV5/6 is of particular importance and has, therefore, to be conspicuously controlled. We present an overview of the current knowledge and recent advances concerning the coordinated regulation of Ca2+ influx through the epithelial Ca2+ channels TRPV5 and TRPV6 in transcellular Ca2+ (re)absorption.


Journal of The American Society of Nephrology | 2005

Hypervitaminosis D Mediates Compensatory Ca2+ Hyperabsorption in TRPV5 Knockout Mice

Kirsten Y. Renkema; Tom Nijenhuis; Bram C. J. van der Eerden; Annemiete W. C. M. van der Kemp; Harrie Weinans; Johannes P.T.M. van Leeuwen; René J. M. Bindels; Joost G. J. Hoenderop

Vitamin D plays an important role in Ca(2+) homeostasis by controlling Ca(2+) (re)absorption in intestine, kidney, and bone. The epithelial Ca(2+) channel TRPV5 mediates the Ca(2+) entry step in active Ca(2+) reabsorption. TRPV5 knockout (TRPV5(-/-)) mice show impaired Ca(2+) reabsorption, hypercalciuria, hypervitaminosis D, and intestinal hyperabsorption of Ca(2+). Moreover, these mice demonstrate upregulation of intestinal TRPV6 and calbindin-D(9K) expression compared with wild-type mice. For addressing the role of the observed hypervitaminosis D in the maintenance of Ca(2+) homeostasis and the regulation of expression levels of the Ca(2+) transport proteins in kidney and intestine, TRPV5/25-hydroxyvitamin-D(3)-1alpha-hydroxylase double knockout (TRPV5(-/-)/1alpha-OHase(-/-)) mice, which show undetectable serum 1,25(OH)(2)D(3) levels, were generated. TRPV5(-/-)/1alpha-OHase(-/-) mice displayed a significant hypocalcemia compared with wild-type mice (1.10 +/- 0.02 and 2.54 +/- 0.01 mM, respectively; P < 0.05). mRNA levels of renal calbindin-D(28K) (7 +/- 2%), calbindin-D(9K) (32 +/- 4%), Na(+)/Ca(2+) exchanger (12 +/- 2%), and intestinal TRPV6 (40 +/- 8%) and calbindin-D(9K) (26 +/- 4%) expression levels were decreased compared with wild-type mice. Hyperparathyroidism and rickets were present in TRPV5(-/-)/1alpha-OHase(-/-) mice, more pronounced than observed in single TRPV5 or 1alpha-OHase knockout mice. It is interesting that a renal Ca(2+) leak, as demonstrated in TRPV5(-/-) mice, persisted in TRPV5(-/-)/1alpha-OHase(-/-) mice, but a compensatory upregulation of intestinal Ca(2+) transporters was abolished. In conclusion, the elevation of serum 1,25(OH)(2)D(3) levels in TRPV5(-/-) mice is responsible for the upregulation of intestinal Ca(2+) transporters and Ca(2+) hyperabsorption. Hypervitaminosis D, therefore, is of crucial importance to maintain normocalcemia in impaired Ca(2+) reabsorption in TRPV5(-/-) mice.


Pflügers Archiv: European Journal of Physiology | 2003

(Patho)physiological implications of the novel epithelial Ca2+ channels TRPV5 and TRPV6.

Tom Nijenhuis; Joost G. J. Hoenderop; Bernd Nilius; René J. M. Bindels

The epithelial Ca2+ channels TRPV5 and TRPV6 constitute the apical Ca2+ entry mechanism in active Ca2+ (re)absorption. These two members of the superfamily of transient receptor potential (TRP) channels were cloned from the vitamin-D-responsive epithelia of kidney and small intestine and subsequently identified in other tissues such as bone, pancreas and prostate. These channels are regulated by vitamin D as exemplified in animal models of vitamin-D-deficiency rickets. In addition, the epithelial Ca2+ channels might be involved in the multifactorial pathogenesis of disorders ranging from idiopathic hypercalciuria, stone disease and postmenopausal osteoporosis. This review highlights the emerging (patho)physiological implications of these epithelial Ca2+ channels.


Journal of The American Society of Nephrology | 2016

Hepatocyte Nuclear Factor 1β–Associated Kidney Disease: More than Renal Cysts and Diabetes

Jacobien C. Verhave; Anneke P. Bech; Jack F.M. Wetzels; Tom Nijenhuis

Hepatocyte nuclear factor 1β (HNF1β)-associated disease is a recently recognized clinical entity with a variable multisystem phenotype. Early reports described an association between HNF1B mutations and maturity-onset diabetes of the young. These patients often presented with renal cysts and renal function decline that preceded the diabetes, hence it was initially referred to as renal cysts and diabetes syndrome. However, it is now evident that many more symptoms occur, and diabetes and renal cysts are not always present. The multisystem phenotype is probably attributable to functional promiscuity of the HNF1β transcription factor, involved in the development of the kidney, urogenital tract, pancreas, liver, brain, and parathyroid gland. Nephrologists might diagnose HNF1β-associated kidney disease in patients referred with a suspected diagnosis of autosomal dominant polycystic kidney disease, medullary cystic kidney disease, diabetic nephropathy, or CKD of unknown cause. Associated renal or extrarenal symptoms should alert the nephrologist to HNF1β-associated kidney disease. A considerable proportion of these patients display hypomagnesemia, which sometimes mimics Gitelman syndrome. Other signs include early onset diabetes, gout and hyperparathyroidism, elevated liver enzymes, and congenital anomalies of the urogenital tract. Because many cases of this disease are probably undiagnosed, this review emphasizes the clinical manifestations of HNF1β-associated disease for the nephrologist.


American Journal of Pathology | 2014

Glucose Specifically Regulates TRPC6 Expression in the Podocyte in an AngII-Dependent Manner

Ramon Sonneveld; Johan van der Vlag; Marijke P.A. Baltissen; Sjoerd Verkaart; Jack F.M. Wetzels; J.H.M. Berden; Joost G. J. Hoenderop; Tom Nijenhuis

Slit diaphragm and podocyte damage is crucial in the pathogenesis of proteinuria in diabetic nephropathy (DNP). Gain-of-function mutations in TRPC6, a slit diaphragm-associated ion channel, cause glomerulosclerosis; TRPC6 expression is increased in acquired glomerular disease. Hyperglycemia and high intrarenal angiotensin II (AngII) levels could contribute to podocyte injury in DNP. We determined whether glucose regulates TRPC6 expression and TRPC6-mediated Ca(2+) influx into the podocyte and whether these effects are AngII dependent. High glucose levels increased TRPC6 mRNA and protein expression in cultured podocytes; however, TRPC1 and TRPC5 mRNA expression was unaltered. AngII and inducing podocyte injury also specifically increased TRPC6 expression. Angiotensin receptor blockade and inhibition of local AngII production through angiotensin-converting enzyme inhibition prevented glucose-mediated increased TRPC6 expression. In addition, high glucose concentration pretreatment enhanced Ca(2+) influx in podocytes, which was prevented by concomitant angiotensin receptor blockade application and TRPC6 knockdown. Studies with a TRPC6 luciferase promoter construct demonstrated a glucose concentration-dependent effect on TRPC6 promoter activity. In vivo, podocyte TRPC6 protein expression was increased in proteinuric streptozotocin-induced diabetic rats. These data suggest that glucose can activate a local renin-angiotensin system in the podocyte, leading to increased TRPC6 expression, which enhances TRPC6-mediated Ca(2+) influx. Regulation of TRPC6 expression could be an important factor in podocyte injury due to chronic hyperglycemia and the antiproteinuric effect of angiotensin receptor blockade or angiotensin-converting enzyme inhibition in DNP.

Collaboration


Dive into the Tom Nijenhuis's collaboration.

Top Co-Authors

Avatar

Jack F.M. Wetzels

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

René J. M. Bindels

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Anneke P. Bech

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Johan van der Vlag

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.H.M. Berden

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Joost G.J. Hoenderop

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Ramon Sonneveld

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge