Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tom Owen-Hughes is active.

Publication


Featured researches published by Tom Owen-Hughes.


Cell | 1996

The TAFII250 Subunit of TFIID Has Histone Acetyltransferase Activity

Craig A. Mizzen; Xiang Jiao Yang; Tetsuro Kokubo; J. E. Brownell; Andrew J. Bannister; Tom Owen-Hughes; Jerry L. Workman; Lian Wang; Shelley L. Berger; Tony Kouzarides; Yoshihiro Nakatani; C. David Allis

The transcription initiation factor TFIID is a multimeric protein complex composed of TATA box-binding protein (TBP) and many TBP-associated factors (TAF(II)s). TAF(II)s are important cofactors that mediate activated transcription by providing interaction sites for distinct activators. Here, we present evidence that human TAF(II)250 and its homologs in Drosophila and yeast have histone acetyltransferase (HAT) activity in vitro. HAT activity maps to the central, most conserved portion of dTAF(II)230 and yTAF(II)130. The HAT activity of dTAF(II)230 resembles that of yeast and human GCN5 in that it is specific for histones H3 and H4 in vitro. Our findings suggest that targeted histone acetylation at specific promoters by TAF(II)250 may be involved in mechanisms by which TFIID gains access to transcriptionally repressed chromatin.


Nucleic Acids Research | 2006

Identification of multiple distinct Snf2 subfamilies with conserved structural motifs

Andrew Flaus; David M. A. Martin; Geoffrey J. Barton; Tom Owen-Hughes

The Snf2 family of helicase-related proteins includes the catalytic subunits of ATP-dependent chromatin remodelling complexes found in all eukaryotes. These act to regulate the structure and dynamic properties of chromatin and so influence a broad range of nuclear processes. We have exploited progress in genome sequencing to assemble a comprehensive catalogue of over 1300 Snf2 family members. Multiple sequence alignment of the helicase-related regions enables 24 distinct subfamilies to be identified, a considerable expansion over earlier surveys. Where information is known, there is a good correlation between biological or biochemical function and these assignments, suggesting Snf2 family motor domains are tuned for specific tasks. Scanning of complete genomes reveals all eukaryotes contain members of multiple subfamilies, whereas they are less common and not ubiquitous in eubacteria or archaea. The large sample of Snf2 proteins enables additional distinguishing conserved sequence blocks within the helicase-like motor to be identified. The establishment of a phylogeny for Snf2 proteins provides an opportunity to make informed assignments of function, and the identification of conserved motifs provides a framework for understanding the mechanisms by which these proteins function.


Science | 2009

Poly(ADP-ribose)–Dependent Regulation of DNA Repair by the Chromatin Remodeling Enzyme ALC1

Dragana Ahel; Zuzana Horejsi; Nicola Wiechens; Sophie E. Polo; Elisa Garcia-Wilson; Ivan Ahel; Helen R. Flynn; Mark Skehel; Stephen C. West; Tom Owen-Hughes; Simon J. Boulton

Damage, Signal, Maneuver Cellular processes, such as transcription and DNA repair, require modification and manipulation of chromosomally associated proteins by a diverse set of chromatin remodeling complexes. The mechanisms by which cells regulate chromatin remodeling are not completely understood. During the response elicited by DNA damage, the addition of poly(ADP-ribose) to chromatin is associated with chromatin decondensation, which is thought to promote efficient DNA repair. Ahel et al. (p. 1240, published online 30 July 2009) have identified a chromatin remodeling enzyme as a DNA damage-response protein, which binds poly(ADP-ribose). A chromatin remodeling complex targeted by poly(ADP ribosyl)ation plays a role in DNA repair. Posttranslational modifications play key roles in regulating chromatin plasticity. Although various chromatin-remodeling enzymes have been described that respond to specific histone modifications, little is known about the role of poly[adenosine 5′-diphosphate (ADP)–ribose] in chromatin remodeling. Here, we identify a chromatin-remodeling enzyme, ALC1 (Amplified in Liver Cancer 1, also known as CHD1L), that interacts with poly(ADP-ribose) and catalyzes PARP1-stimulated nucleosome sliding. Our results define ALC1 as a DNA damage–response protein whose role in this process is sustained by its association with known DNA repair factors and its rapid poly(ADP-ribose)–dependent recruitment to DNA damage sites. Furthermore, we show that depletion or overexpression of ALC1 results in sensitivity to DNA-damaging agents. Collectively, these results provide new insights into the mechanisms by which poly(ADP-ribose) regulates DNA repair.


Molecular Cell | 2009

A Method for Genetically Installing Site-Specific Acetylation in Recombinant Histones Defines the Effects of H3 K56 Acetylation

Heinz Neumann; Susan M. Hancock; Ruth Buning; Andrew Routh; Lynda Chapman; Joanna Somers; Tom Owen-Hughes; John van Noort; Daniela Rhodes; Jason W. Chin

Summary Lysine acetylation of histones defines the epigenetic status of human embryonic stem cells and orchestrates DNA replication, chromosome condensation, transcription, telomeric silencing, and DNA repair. A detailed mechanistic explanation of these phenomena is impeded by the limited availability of homogeneously acetylated histones. We report a general method for the production of homogeneously and site-specifically acetylated recombinant histones by genetically encoding acetyl-lysine. We reconstitute histone octamers, nucleosomes, and nucleosomal arrays bearing defined acetylated lysine residues. With these designer nucleosomes, we demonstrate that, in contrast to the prevailing dogma, acetylation of H3 K56 does not directly affect the compaction of chromatin and has modest effects on remodeling by SWI/SNF and RSC. Single-molecule FRET experiments reveal that H3 K56 acetylation increases DNA breathing 7-fold. Our results provide a molecular and mechanistic underpinning for cellular phenomena that have been linked with K56 acetylation.


Nature | 1999

Nucleosome mobilization catalysed by the yeast SWI/SNF complex

Iestyn Whitehouse; Andrew Flaus; Bradley R. Cairns; Malcolm F. White; Jerry L. Workman; Tom Owen-Hughes

The generation of a local chromatin topology conducive to transcription is a key step in gene regulation. The yeast SWI/SNF complex is the founding member of a family of ATP-dependent remodelling activities capable of altering chromatin structure both in vitro and in vivo. Despite its importance, the pathway by which the SWI/SNF complex disrupts chromatin structure is unknown. Here we use a model system to demonstrate that the yeast SWI/SNF complex can reposition nucleosomes in an ATP-dependent reaction that favours attachment of the histone octamer to an acceptor site on the same molecule of DNA (in cis). We show that SWI/SNF-mediated displacement of the histone octamer is effectively blocked by a barrier introduced into the DNA, suggesting that this redistribution involves sliding or tracking of nucleosomes along DNA, and that it is achieved by a catalytic mechanism. We conclude that SWI/SNF catalyses the redistribution of nucleosomes along DNA in cis, which may represent a general mechanism by which ATP-dependent chromatin remodelling occurs.


Cell | 1992

The chromatin-associated protein H-NS interacts with curved DNA to influence DNA topology and gene expression

Tom Owen-Hughes; Graham D. Pavitt; Diogenes S. Santos; Julie M. Sidebotham; C. S. J. Hulton; Jay C. D. Hinton; Christopher F. Higgins

H-NS is an abundant structural component of bacterial chromatin and influences many cellular processes, including recombination, transposition, and transcription. We have studied the mechanism of action of H-NS at the osmotically regulated proU promoter. The interaction of H-NS with a curved DNA element located downstream of the proU promoter is required for normal regulation of expression. Heterologous curved sequences can replace the regulatory role of the proU curve. Hence, the luxAB and lacZ reporter genes, which differ in the presence or absence of a curve, can indicate very different patterns of transcription. H-NS interacts preferentially with these curved DNA elements in vitro. Furthermore, in vivo the interaction of H-NS with curved DNA participates in the control of plasmid linking number. The data suggest that H-NS-dependent changes in DNA topology play a role in the osmoregulation of proU expression.


Cell | 2013

Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes.

Geeta J. Narlikar; Ramasubramanian Sundaramoorthy; Tom Owen-Hughes

Chromatin provides both a means to accommodate a large amount of genetic material in a small space and a means to package the same genetic material in different chromatin states. Transitions between chromatin states are enabled by chromatin-remodeling ATPases, which catalyze a diverse range of structural transformations. Biochemical evidence over the last two decades suggests that chromatin-remodeling activities may have emerged by adaptation of ancient DNA translocases to respond to specific features of chromatin. Here, we discuss such evidence and also relate mechanistic insights to our understanding of how chromatin-remodeling enzymes enable different in vivo processes.


Cell | 2000

Generation of Superhelical Torsion by ATP-Dependent Chromatin Remodeling Activities

Kristina M. Havas; Andrew Flaus; Michael Phelan; Robert E. Kingston; Paul A. Wade; David M. J. Lilley; Tom Owen-Hughes

ATP-dependent chromatin remodeling activities participate in the alteration of chromatin structure during gene regulation. All have DNA- or chromatin-stimulated ATPase activity and many can alter the structure of chromatin; however, the means by which they do this have remained unclear. Here we describe a novel activity for ATP-dependent chromatin remodeling activities, the ability to generate unconstrained negative superhelical torsion in DNA and chromatin. We find that the ability to distort DNA is shared by the yeast SWI/SNF complex, Xenopus Mi-2 complex, recombinant ISWI, and recombinant BRG1, suggesting that the generation of superhelical torsion represents a primary biomechanical activity shared by all Snf2p-related ATPase motors. The generation of superhelical torque provides a potent means by which ATP-dependent chromatin remodeling activities can manipulate chromatin structure.


Science | 1996

Persistent Site-Specific Remodeling of a Nucleosome Array by Transient Action of the SWI/SNF Complex

Tom Owen-Hughes; Rhea T. Utley; Jacques Côté; Craig L. Peterson; Jerry L. Workman

The SWI/SNF complex participates in the restructuring of chromatin for transcription. The function of the yeast SWI/SNF complex in the remodeling of a nucleosome array has now been analyzed in vitro. Binding of the purified SWI/SNF complex to a nucleosome array disrupted multiple nucleosomes in an adenosine triphosphate-dependent reaction. However, removal of SWI/SNF left a deoxyribonuclease I-hypersensitive site specifically at a nucleosome that was bound by derivatives of the transcription factor Gal4p. Analysis of individual nucleosomes revealed that the SWI/SNF complex catalyzed eviction of histones from the Gal4-bound nucleosomes. Thus, the transient action of the SWI/SNF complex facilitated irreversible disruption of transcription factor-bound nucleosomes.


The EMBO Journal | 1994

The chromatin-associated protein H-NS alters DNA topology in vitro.

A.E. Tupper; Tom Owen-Hughes; David W. Ussery; Diogenes S. Santos; D. J. P. Ferguson; Julie M. Sidebotham; Jay C. D. Hinton; Christopher F. Higgins

H‐NS is one of the two most abundant proteins in the bacterial nucleoid and influences the expression of a number of genes. We have studied the interaction of H‐NS with DNA; purified H‐NS was demonstrated to constrain negative DNA supercoils in vitro. This provides support for the hypothesis that H‐NS influences transcription via changes in DNA topology, and is evidence of a structural role for H‐NS in bacterial chromatin. The effects of H‐NS on topology were only observed at sub‐saturating concentrations of the protein. In addition, a preferred binding site on DNA was identified by DNase I footprinting at sub‐saturating H‐NS concentrations. This site corresponded to a curved sequence element which we previously showed, by in vivo studies, to be a site at which H‐NS influences transcription of the proU operon. When present in saturating concentrations, H‐NS did not constrain supercoils and bound to DNA in a sequence‐independent fashion, covering all DNA molecules from end to end, suggesting that H‐NS may form distinct complexes with DNA at different H‐NS:DNA ratios. The data presented here provide direct support for the hypothesis that H‐NS acts at specific sites to influence DNA topology and, hence, transcription.

Collaboration


Dive into the Tom Owen-Hughes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerry L. Workman

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge