Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tom R. Bishop is active.

Publication


Featured researches published by Tom R. Bishop.


Nature Communications | 2015

Logging cuts the functional importance of invertebrates in tropical rainforest

Robert M. Ewers; Michael Jw Boyle; Rosalind A. Gleave; Nichola S. Plowman; Suzan Benedick; Henry Bernard; Tom R. Bishop; Effendi Y. Bakhtiar; Vun Khen Chey; Arthur Y. C. Chung; Richard G. Davies; David Edwards; Paul Eggleton; Tom M. Fayle; Stephen R. Hardwick; Rahman Homathevi; Roger Kitching; Min Sheng Khoo; Sarah H. Luke; Joshua J. March; Reuben Nilus; Marion Pfeifer; Sri V. Rao; Adam Sharp; Jake L. Snaddon; Nigel E. Stork; Oliver R. Wearn; Kalsum M. Yusah; Edgar C. Turner

Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests.


Journal of Biogeography | 2015

Contrasting species and functional beta diversity in montane ant assemblages

Tom R. Bishop; Mark P. Robertson; Berndt J. van Rensburg; Catherine L. Parr

Abstract Aim Beta diversity describes the variation in species composition between sites and can be used to infer why different species occupy different parts of the globe. It can be viewed in a number of ways. First, it can be partitioned into two distinct patterns: turnover and nestedness. Second, it can be investigated from either a species identity or a functional‐trait point of view. We aim to document for the first time how these two aspects of beta diversity vary in response to a large environmental gradient. Location Maloti‐Drakensberg Mountains, southern Africa. Methods We sampled ant assemblages along an extensive elevational gradient (900–3000 m a.s.l.) twice yearly for 7 years, and collected functional‐trait information related to the species’ dietary and habitat‐structure preferences. We used recently developed methods to partition species and functional beta diversity into their turnover and nestedness components. A series of null models were used to test whether the observed beta diversity patterns differed from random expectations. Results Species beta diversity was driven by turnover, but functional beta diversity was composed of both turnover and nestedness patterns at different parts of the gradient. Null models revealed that deterministic processes were likely to be responsible for the species patterns but that the functional changes were indistinguishable from stochasticity. Main conclusions Different ant species are found with increasing elevation, but they tend to represent an increasingly nested subset of the available functional strategies. This finding is unique and narrows down the list of possible factors that control ant existence across elevation. We conclude that diet and habitat preferences have little role in structuring ant assemblages in montane environments and that some other factor must be driving the non‐random patterns of species turnover. This finding also highlights the importance of distinguishing between different kinds of beta diversity.


PLOS ONE | 2016

Evaluating functional diversity : missing trait data and the importance of species abundance structure and data transformation

Maria Májeková; Taavi Paal; Nichola S. Plowman; Michala Bryndová; Liis Kasari; Anna Norberg; Matthias Weiss; Tom R. Bishop; Sarah H. Luke; Katerina Sam; Yoann Le Bagousse-Pinguet; Jan Lepš; Lars Götzenberger; Francesco de Bello

Functional diversity (FD) is an important component of biodiversity that quantifies the difference in functional traits between organisms. However, FD studies are often limited by the availability of trait data and FD indices are sensitive to data gaps. The distribution of species abundance and trait data, and its transformation, may further affect the accuracy of indices when data is incomplete. Using an existing approach, we simulated the effects of missing trait data by gradually removing data from a plant, an ant and a bird community dataset (12, 59, and 8 plots containing 62, 297 and 238 species respectively). We ranked plots by FD values calculated from full datasets and then from our increasingly incomplete datasets and compared the ranking between the original and virtually reduced datasets to assess the accuracy of FD indices when used on datasets with increasingly missing data. Finally, we tested the accuracy of FD indices with and without data transformation, and the effect of missing trait data per plot or per the whole pool of species. FD indices became less accurate as the amount of missing data increased, with the loss of accuracy depending on the index. But, where transformation improved the normality of the trait data, FD values from incomplete datasets were more accurate than before transformation. The distribution of data and its transformation are therefore as important as data completeness and can even mitigate the effect of missing data. Since the effect of missing trait values pool-wise or plot-wise depends on the data distribution, the method should be decided case by case. Data distribution and data transformation should be given more careful consideration when designing, analysing and interpreting FD studies, especially where trait data are missing. To this end, we provide the R package “traitor” to facilitate assessments of missing trait data.


Proceedings of the Royal Society B: Biological Sciences | 2015

Climate mediates the effects of disturbance on ant assemblage structure

Heloise Gibb; Nathan J. Sanders; Robert R. Dunn; Simon J. Watson; Manoli Photakis; Sílvia Abril; Alan N. Andersen; Elena Angulo; Inge Armbrecht; Xavier Arnan; Fabricio Beggiato Baccaro; Tom R. Bishop; Raphaël Boulay; Cristina Castracani; Israel Del Toro; Thibaut Delsinne; Mireia Diaz; David A. Donoso; Martha L. Enríquez; Tom M. Fayle; Donald H. Feener; Matthew C. Fitzpatrick; Crisanto Gómez; Donato A. Grasso; Sarah Groc; Brain Heterick; Benjamin D. Hoffmann; Lori Lach; John E. Lattke; Maurice Leponce

Many studies have focused on the impacts of climate change on biological assemblages, yet little is known about how climate interacts with other major anthropogenic influences on biodiversity, such as habitat disturbance. Using a unique global database of 1128 local ant assemblages, we examined whether climate mediates the effects of habitat disturbance on assemblage structure at a global scale. Species richness and evenness were associated positively with temperature, and negatively with disturbance. However, the interaction among temperature, precipitation and disturbance shaped species richness and evenness. The effect was manifested through a failure of species richness to increase substantially with temperature in transformed habitats at low precipitation. At low precipitation levels, evenness increased with temperature in undisturbed sites, peaked at medium temperatures in disturbed sites and remained low in transformed sites. In warmer climates with lower rainfall, the effects of increasing disturbance on species richness and evenness were akin to decreases in temperature of up to 9°C. Anthropogenic disturbance and ongoing climate change may interact in complicated ways to shape the structure of assemblages, with hot, arid environments likely to be at greatest risk.


Insect Conservation and Diversity | 2017

GlobalAnts: a new database on the geography of ant traits (Hymenoptera: Formicidae)

Catherine L. Parr; Robert R. Dunn; Nathan J. Sanders; Michael D. Weiser; Manoli Photakis; Tom R. Bishop; Matthew C. Fitzpatrick; Xavier Arnan; Fabricio Beggiato Baccaro; Carlos Rodrigues Brandão; Lacy D. Chick; David A. Donoso; Tom M. Fayle; Crisanto Gómez; Blair F. Grossman; Thinandavha C. Munyai; Renata Pacheco; Javier Retana; Andrew J. Robinson; Katayo Sagata; Rogério R. Silva; Melanie Tista; Heraldo L. Vasconcelos; Michelle Yates; Heloise Gibb

In recent years the focus in ecology has shifted from species to a greater emphasis on functional traits. In tandem with this shift, a number of trait databases have been developed covering a range of taxa. Here, we introduce the GlobalAnts database. Globally, ants are dominant, diverse and provide a range of ecosystem functions. The database represents a significant tool for ecology in that it (i) contributes to a global archive of ant traits (morphology, ecology and life history) which complements existing ant databases and (ii) promotes a trait‐based approach in ant and other insect ecology through a broad set of standardised traits. The GlobalAnts database is unique in that it represents the largest online database of functional traits with associated georeferenced assemblage‐level data (abundance and/or occupancy) for any animal group with 9056 ant species and morphospecies records for entire local assemblages across 4416 sites. We describe the structure of the database, types of traits included and present a summary of data coverage. The value of the database is demonstrated through an initial examination of trait distributions across subfamilies, continents and biomes. Striking biogeographic differences in ant traits are highlighted which raise intriguing questions as to the mechanisms generating them.


Ecological Entomology | 2017

Coping with the cold: minimum temperatures and thermal tolerances dominate the ecology of mountain ants

Tom R. Bishop; Mark P. Robertson; Berndt J. van Rensburg; Catherine L. Parr

1. Ants (Hymenoptera: Formicidae) are often cited as highly thermophilic and this has led to a range of studies investigating their thermal tolerances. It is unknown, however, if the geographic distribution of ant thermal tolerance conforms to the two major macropyhsiological rules that have been found in other taxa: Janzens and Bretts rules. In addition, there is a paucity of data on how the lower thermal tolerances of ants are able to influence behaviour.


Ecology | 2017

A global database of ant species abundances

Heloise Gibb; Rob Dunn; Nathan J. Sanders; Blair F. Grossman; Manoli Photakis; Sílvia Abril; Donat Agosti; Alan N. Andersen; Elena Angulo; Inge Armbrecht; Xavier Arnan; Fabricio Beggiato Baccaro; Tom R. Bishop; Raphaël Boulay; Carsten A. Brühl; Cristina Castracani; Xim Cerdá; Israel Del Toro; Thibaut Delsinne; Mireia Diaz; David A. Donoso; Aaron M. Ellison; Martha L. Enríquez; Tom M. Fayle; Donald H. Feener; Brian L. Fisher; Robert N. Fisher; Matthew C. Fitzpatrick; Crisanto Gómez; Nicholas J. Gotelli

What forces structure ecological assemblages? A key limitation to general insights about assemblage structure is the availability of data that are collected at a small spatial grain (local assemblages) and a large spatial extent (global coverage). Here, we present published and unpublished data from 51 ,388 ant abundance and occurrence records of more than 2,693 species and 7,953 morphospecies from local assemblages collected at 4,212 locations around the world. Ants were selected because they are diverse and abundant globally, comprise a large fraction of animal biomass in most terrestrial communities, and are key contributors to a range of ecosystem functions. Data were collected between 1949 and 2014, and include, for each geo-referenced sampling site, both the identity of the ants collected and details of sampling design, habitat type, and degree of disturbance. The aim of compiling this data set was to provide comprehensive species abundance data in order to test relationships between assemblage structure and environmental and biogeographic factors. Data were collected using a variety of standardized methods, such as pitfall and Winkler traps, and will be valuable for studies investigating large-scale forces structuring local assemblages. Understanding such relationships is particularly critical under current rates of global change. We encourage authors holding additional data on systematically collected ant assemblages, especially those in dry and cold, and remote areas, to contact us and contribute their data to this growing data set.


Global Change Biology | 2018

Dominance-diversity relationships in ant communities differ with invasion

Xavier Arnan; Alan N. Andersen; Heloise Gibb; Catherine L. Parr; Nathan J. Sanders; Robert R. Dunn; Elena Angulo; Fabricio Beggiato Baccaro; Tom R. Bishop; Raphaël Boulay; Cristina Castracani; Xim Cerdá; Israel Del Toro; Thibaut Delsinne; David A. Donoso; Emilie K. Elten; Tom M. Fayle; Matthew C. Fitzpatrick; Crisanto Gómez; Donato A. Grasso; Blair F. Grossman; Benoit Guénard; Nihara Gunawardene; Brian Heterick; Benjamin D. Hoffmann; Milan Janda; Clinton N. Jenkins; Petr Klimes; Lori Lach; Thomas Laeger

The relationship between levels of dominance and species richness is highly contentious, especially in ant communities. The dominance-impoverishment rule states that high levels of dominance only occur in species-poor communities, but there appear to be many cases of high levels of dominance in highly diverse communities. The extent to which dominant species limit local richness through competitive exclusion remains unclear, but such exclusion appears more apparent for non-native rather than native dominant species. Here we perform the first global analysis of the relationship between behavioral dominance and species richness. We used data from 1,293 local assemblages of ground-dwelling ants distributed across five continents to document the generality of the dominance-impoverishment rule, and to identify the biotic and abiotic conditions under which it does and does not apply. We found that the behavioral dominance-diversity relationship varies greatly, and depends on whether dominant species are native or non-native, whether dominance is considered as occurrence or relative abundance, and on variation in mean annual temperature. There were declines in diversity with increasing dominance in invaded communities, but diversity increased with increasing dominance in native communities. These patterns occur along the global temperature gradient. However, positive and negative relationships are strongest in the hottest sites. We also found that climate regulates the degree of behavioral dominance, but differently from how it shapes species richness. Our findings imply that, despite strong competitive interactions among ants, competitive exclusion is not a major driver of local richness in native ant communities. Although the dominance-impoverishment rule applies to invaded communities, we propose an alternative dominance-diversification rule for native communities.


Ecography | 2018

Habitat disturbance selects against both small and large species across varying climates

Heloise Gibb; Nathan J. Sanders; Rob Dunn; Xavier Arnan; Heraldo L. Vasconcelos; David A. Donoso; Alan N. Andersen; Rogério R. Silva; Tom R. Bishop; Crisanto Gómez; Blair F. Grossman; Kalsum M. Yusah; Sarah H. Luke; Renata Pacheco; Jessica M. C. Pearce-Duvet; Javier Retana; Melanie Tista; Catherine L. Parr

Global extinction drivers, including habitat disturbance and climate change, are thought to affect larger species more than smaller species. However, it is unclear if such drivers interact to affect assemblage body size distributions. We asked how these two key global change drivers differentially affect the interspecific size distributions of ants, one of the most abundant and ubiquitous animal groups on earth. We also asked whether there is evidence of synergistic interactions and whether effects are related to species’ trophic roles. We generated a global dataset on ant body size from 333 local ant assemblages collected by the authors across a broad range of climates and in disturbed and undisturbed habitats. We used head length (range: 0.22–4.55 mm) as a surrogate of body size and classified species to trophic groups. We used generalized linear models to test whether body size distributions changed with climate and disturbance, independent of species richness. Our analysis yielded three key results: 1) climate and disturbance showed independent associations with body size; 2) assemblages included more small species in warmer climates and fewer large species in wet climates; and 3) both the largest and smallest species were absent from disturbed ecosystems, with predators most affected in both cases. Our results indicate that temperature, precipitation and disturbance have differing effects on the body size distributions of local communities, with no evidence of synergistic interactions. Further, both large and small predators may be vulnerable to global change, particularly through habitat disturbance.


Journal of Biogeography | 2014

Elevation–diversity patterns through space and time: ant communities of the Maloti-Drakensberg Mountains of southern Africa

Tom R. Bishop; Mark P. Robertson; Berndt J. van Rensburg; Catherine L. Parr

Collaboration


Dive into the Tom R. Bishop's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xavier Arnan

Federal University of Pernambuco

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Donoso

Universidad Técnica Particular de Loja

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge