Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tom S. Chan is active.

Publication


Featured researches published by Tom S. Chan.


Free Radical Biology and Medicine | 2001

Peroxidative metabolism of apigenin and naringenin versus luteolin and quercetin: glutathione oxidation and conjugation

Giuseppe Galati; Majid Y. Moridani; Tom S. Chan; Peter J. O’Brien

GSH was readily depleted by a flavonoid, H(2)O(2), and peroxidase mixture but the products formed were dependent on the redox potential of the flavonoid. Catalytic amounts of apigenin and naringenin but not kaempferol (flavonoids that contain a phenol B ring) when oxidized by H(2)O(2) and peroxidase co-oxidized GSH to GSSG via a thiyl radical which could be trapped by 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) to form a DMPO-glutathionyl radical adduct detected by ESR spectroscopy. On the other hand, quercetin and luteolin (flavonoids that contain a catechol B ring) or kaempferol depleted GSH stoichiometrically without forming a thiyl radical or GSSG. Quercetin, luteolin, and kaempferol formed mono-GSH and bis-GSH conjugates, whereas apigenin and naringenin did not form GSH conjugates. MS/MS electrospray spectroscopy showed that mono-GSH conjugates for quercetin and luteolin had peaks at m/z 608 [M + H](+) and m/z 592 [M + H](+) in the positive-ion mode, respectively. (1)H NMR spectroscopy showed that the GSH was bound to the quercetin A ring. Spectral studies indicated that at a physiological pH the luteolin-SG conjugate was formed from a product with a UV maximum absorbance at 260 nm that was reducible by potassium borohydride. The quercetin-SG conjugate or kaempferol-SG conjugate on the other hand was formed from a product with a UV maximum absorbance at 335 nm that was not reducible by potassium borohydride. These results suggest that GSH was oxidized by apigenin/naringenin phenoxyl radicals, whereas GSH conjugate formation involved the o-quinone metabolite of luteolin or the quinoid (quinone methide) product of quercetin/kaempferol.


Chemico-Biological Interactions | 2002

Idiosyncratic NSAID drug induced oxidative stress.

Giuseppe Galati; Shahrzad Tafazoli; Omid Sabzevari; Tom S. Chan; Peter J. O'Brien

Many idiosyncratic non-steroidal anti-inflammatory drugs (NSAIDs) cause GI, liver and bone marrow toxicity in some patients which results in GI bleeding/ulceration/fulminant hepatic failure/hepatitis or agranulocytosis/aplastic anemia. The toxic mechanisms proposed have been reviewed. Evidence is presented showing that idiosyncratic NSAID drugs form prooxidant radicals when metabolised by peroxidases known to be present in these tissues. Thus GSH, NADH and/or ascorbate were cooxidised by catalytic amounts of NSAIDs and hydrogen peroxide in the presence of peroxidase. During GSH and NADH cooxidation, oxygen uptake and activation occurred. Furthermore the formation of NSAID oxidation products was prevented during the cooxidation indicating that the cooxidation involved redox cycling of the first formed NSAID radical product. The order of prooxidant catalytic effectiveness of fenamate and arylacetic acid NSAIDs was mefenamic acid>tolfenamic acid>flufenamic acid, meclofenamic acid or diclofenac. Diphenylamine, a common moiety to all of these NSAIDs was a more active prooxidant for NADH and ascorbate cooxidation than these NSAIDs which suggests that oxidation of the NSAID diphenylamine moiety to a cation and/or nitroxide radical was responsible for the NSAID prooxidant activity. The order of catalytic effectiveness found for sulfonamide derivatives was sulfaphenazole>sulfisoxazolez.Gt;dapsone>sulfanilic acid>procainamide>sulfamethoxazole>sulfadiazine>sulfadimethoxine whereas sulfanilamide, sulfapyridine or nimesulide had no prooxidant activity. Although indomethacin had little prooxidant activity, its major in vivo metabolite, N-deschlorobenzoyl indomethacin had significant prooxidant activity. Aminoantipyrine the major in vivo metabolite of aminopyrine or dipyrone was also more prooxidant than the parent drugs. It is hypothesized that the NSAID radicals and/or the resulting oxidative stress initiates the cytotoxic processes leading to idiosyncratic toxicity.


Molecular and Cellular Biochemistry | 2003

Effects of phosphodiesterase 3,4,5 inhibitors on hepatocyte cAMP levels, glycogenolysis, gluconeogenesis and susceptibility to a mitochondrial toxin

Mohammad Abdollahi; Tom S. Chan; Vangala Subrahmanyam; Peter J. O'Brien

Various phosphodiesterase (PDE) 3,4 and 5 inhibitors have been compared with glucagon for their effectiveness at increasing hepatocyte cAMP, glycogenolysis and gluconeogenesis. Preincubation of isolated hepatocytes with PDE 3 and 4 inhibitors (50 μM) for 2 h induced significant increases in cellular cAMP level. The order of effectiveness was: glucagon (78%), V11294A (42%), rolipram (40%), milrinone (36%), CDP-840 (33%), R0 20-1724 (31%), papaverine (27%), isobutylmethylxanthine (28%), isoliquiritigenin (25%), theophylline (22%), and amrinone (22%). The PDE 5 inhibitors dipyridamol and sildenafil had only a slight effect on cAMP levels. Glucose formation was increased as a result of increased glycogenolysis in the following order of effectiveness: glucagon (89%), V11294A (63%), rolipram (61%), milrinone (50%), CDP-840 (46%), R0 20-1724 (45%), sildenafil (34%), dipyridamol (31%), papaverine (30%), isobutylmethylxanthine (29%), theophylline (20%), amrinone (20%), and isoliquiritigenin (20%). Rolipram and milrinone, selective PDE 4 and PDE 3 inhibitors respectively, stimulated the gluconeogenesis of alanine, lactate + pyruvate, or fructose in hepatocytes isolated from fasted rats. On the other hand, selective cGMP specific phospodiesterase inhibitors, sildenafil and dipyridamol inhibited alanine-induced gluconeogenesis. All PDE inhibitors increased hepatocyte susceptibility to cyanide toxicity (3–4 fold) which was prevented by fructose whereas PDE 5 inhibitors did not significantly increase hepatocyte susceptibility.


Chemico-Biological Interactions | 1999

Oxygen activation during peroxidase catalysed metabolism of flavones or flavanones.

Tom S. Chan; Giuseppe Galati; Peter J. O’Brien

Flavonoids containing phenol B rings, e.g. naringenin, naringin, hesperetin and apigenin, formed prooxidant metabolites that oxidised NADH upon oxidation by peroxidase/H2O2. Extensive oxygen uptake occurred which was proportional to the NADH oxidised and was increased up to twofold by superoxide dismutase. Only catalytic amounts of flavonoids and H2O2 were required indicating a redox cycling mechanism that activates oxygen and generates H2O2. NADH also prevented the oxidative destruction of flavonoids by peroxidase/H2O2 until the NADH was depleted. These results suggest that prooxidant phenoxyl radicals formed by these flavonoids cooxidise NADH to form NAD radicals which then activated oxygen. Similar oxygen activation mechanisms by other phenoxyl radicals have been implicated in the initiation of atherosclerosis and carcinogenesis by xenobiotic phenolic metabolites. This is the first time that a group of flavonoids have been identified as prooxidants independent of transition metal catalysed autoxidation reactions.


Free Radical Research | 2002

Coenzyme Q cytoprotective mechanisms for mitochondrial complex I cytopathies involves NAD(P)H: quinone oxidoreductase 1(NQO1).

Tom S. Chan; Shirley Teng; John X. Wilson; Giuseppe Galati; Sumsallah Khan; Peter J. O'Brien

The commonest mitochondrial diseases are probably those impairing the function of complex I of the respiratory electron transport chain. Such complex I impairment may contribute to various neurodegenerative disorders e.g. Parkinsons disease. In the following, using hepatocytes as a model cell, we have shown for the first time that the cytotoxicity caused by complex I inhibition by rotenone but not that caused by complex III inhibition by antimycin can be prevented by coenzyme Q (CoQ 1 ) or menadione. Furthermore, complex I inhibitor cytotoxicity was associated with the collapse of the mitochondrial membrane potential and reactive oxygen species (ROS) formation. ROS scavengers or inhibitors of the mitochondrial permeability transition prevented cytotoxicity. The CoQ 1 cytoprotective mechanism required CoQ 1 reduction by DT-diaphorase (NQO 1 ). Furthermore, the mitochondrial membrane potential and ATP levels were restored at low CoQ 1 concentrations (5 w M). This suggests that the CoQ 1 H 2 formed by NQO 1 reduced complex III and acted as an electron bypass of the rotenone block. However cytoprotection still occurred at higher CoQ 1 concentrations (>10 w M), which were less effective at restoring ATP levels but readily restored the cellular cytosolic redox potential (i.e. lactate: pyruvate ratio) and prevented ROS formation. This suggests that CoQ 1 or menadione cytoprotection also involves the NQO 1 catalysed reoxidation of NADH that accumulates as a result of complex I inhibition. The CoQ 1 H 2 formed would then also act as a ROS scavenger.


Free Radical Research | 2003

Simultaneous Detection of the Antioxidant and Pro-oxidant Activity of Dietary Polyphenolics in a Peroxidase System

Tom S. Chan; Giuseppe Galati; Ananth Sekher Pannala; Catherine Rice-Evans; Peter J. O'Brien

The ability to reduce the peroxidase (myeloglobin/H2O2)-generated ABTS•+ [2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) radical cation] has been used to rank the antioxidant activity of various agents including dietary flavonoids and chalcones. Surprisingly, we found that in the presence of catalytic concentrations of the phenol B-ring containing flavonoids, apigenin, naringenin and the chalcone phloretin, the formation of the ABTS•+ was initially increased. The enhanced formation of the ABTS•+ was attributed to the peroxidase/H2O2 mediated generation of polyphenolic phenoxyl radicals that were able to co-oxidize ABTS. The relative ABTS•+ generating ability of these dietary polyphenolics correlated with their ability to co-oxidize NADH to the NAD* radical with the resultant generation of superoxide. This pro-oxidant activity was not observed for either luteolin or eriodyctiol, which are B-ring catecholic analogues of apigenin and naringenin, respectively, suggesting that these antioxidants are incapable of the transition metal-independent generation of reactive oxygen species. This pro-oxidant activity of the polyphenolics therefore needs to be taken into account when quantifying antioxidant activity.


Drug Metabolism Reviews | 2002

N-OXIDATION OF AROMATIC AMINES BY INTRACELLULAR OXIDASES

Arno G. Siraki; Tom S. Chan; Giuseppe Galati; Shirley Teng; Peter J. O'Brien

The introduction includes a literature review of DNA reactive species and DNA adduct formation that results from aromatic amine N-oxidation catalyzed by hepatic cytochrome P450 vs. that catalyzed by nonhepatic peroxidases. Experimental evidence is then described for a novel oxidative stress mechanism involving prooxidant N-cation radical formation by both oxidases, which is proposed as a contributing mechanism for aromatic amine induced cytotoxicity and carcinogenesis. Aromatic amine N-cation radicals formed by peroxidases were found to cooxidize GSH or NADH and form reactive oxygen species. The latter could explain the reported DNA oxidative damage found in vivo following methylaminoazobenzene administration [Hirano et al. Analyses of Oxidative DNA Damage and Its Repair Activity in the Livers of 3′-Methyl-4-dimethylaminoazobenzene-Treated Rodents. Jpn. J. Cancer Res. 2000, 91, 681–685]. It was also found that the prooxidant activity of the aromatic amine increased as its redox potential, i.e., ease of oxidation decreased with o-anisidine and aminofluorene being the most effective at forming reactive oxygen species. This suggests that the rate-limiting step in the cooxidation is the rate of arylamine oxidation by the peroxidase. Incubation of hepatocytes with aromatic amines caused a decrease in the mitochondrial membrane potential before cytotoxicity ensued. The CYP1A2-induced hepatocytes isolated from 3-methylcholanthrene administered rats were much more susceptible to some arylamines and were protected by CYP1A2 inhibitors. Hepatocyte GSH was also depleted by all arylamines tested and extensive GSH oxidation occurred with o-anisidine and aminofluorene, which was prevented by CYP1A2 inhibitors. This suggests that in intact hepatocytes CYP1A2 may also catalyze a one-electron oxidation of some arylamines to form prooxidant cation radicals, which cooxidize GSH to form the reactive oxygen species.


Methods in Enzymology | 2005

Sulfation and Glucuronidation of Phenols: Implications in Coenyzme Q Metabolism

Nandita Shangari; Tom S. Chan; Peter J. O'Brien

Phase II conjugation of phenolic compounds constitutes an important mechanism through which exogenous or endogenous toxins are detoxified and excreted. Species differences in the rates of glucuronidation or sulfation can lead to significant variation in the metabolism of this class of compounds. Conjugation of the hydroxyl groups of phenols can occur with glucuronate or sulfate. Quinone metabolism, deactivation, and detoxification are also affected by the same conjugatory systems as phenols; however, reduction of quinones to hydroquinols seems to be a prerequisite. This work reviews current knowledge on phenol conjugation and its implications on hydroquinone metabolism with special consideration for coenzyme Q metabolism.


Chemico-Biological Interactions | 2001

Cytochrome P450 2E1 metabolically activates propargyl alcohol: propiolaldehyde-induced hepatocyte cytotoxicity.

Majid Y. Moridani; Sumsullah Khan; Tom S. Chan; Shirley Teng; Kristin Beard; Peter J. O'Brien

Pargyline, an antihypertensive agent and monoamine oxidase inhibitor, induces hepatic GSH depletion and hepatotoxicity in vivo in rats [E.G. De Master, H.W. Sumner, E. Kaplan, F. N. Shirota, H.T. Nagasawa, Toxicol. Appl. Pharmacol. 65 (1982) 390-401]. Propargyl alcohol (2-propyn-1-ol), because of its structural similarity to allyl alcohol, was thought to be activated by alcohol dehydrogenase. However, it is a poor substrate compared to allyl alcohol and it was therefore proposed that propargyl alcohol-induced liver injury involved metabolic activation by catalase/H(2)O(2) [E.G. De Master, T. Dahlseid, B. Redfern, Chem. Res. Toxicol. 7 (1994) 414-419]. In the following we showed that; (1) propargyl alcohol-induced cytotoxicity was markedly enhanced in CYP 2E1-induced hepatocytes and prevented by various CYP 2E1 inhibitors but was only slightly affected when alcohol dehydrogenase was inhibited with methylpyrazole/DMSO or when catalase was inactivated with azide or aminotriazole, (2) hepatocyte GSH depletion preceded cytotoxicity and was inhibited by cytochrome P450 inhibitors but not by catalase/alcohol dehydrogenase inhibitors. GSH conjugate formation during propargyl alcohol metabolism by microsomal mixed function oxidase in the presence of GSH was also prevented by anti-rat CYP 2E1 or CYP 2E1 inhibitors, (3) cytotoxicity was prevented when lipid peroxidation was inhibited with antioxidants, desferoxamine (ferric chelator) or dithiothreitol. Propargyl alcohol-induced cytotoxicity and reactive oxygen species formation were markedly increased in GSH-depleted hepatocytes. All of this evidence suggests that propargyl alcohol-induced cytotoxicity involves metabolic activation by CYP 2E1 to form propiolaldehyde that causes hepatocyte lysis as a result of GSH depletion and lipid peroxidation.


Methods in Enzymology | 2004

Coenzyme Q cytoprotective mechanisms.

Tom S. Chan; John X. Wilson; Peter J. O'Brien

Publisher Summary This chapter provides an overview of coenzyme Q (CoQ) cytoprotective mechanisms. CoQ cytoprotective mechanisms can be divided into bioenergetic function and antioxidant activity. To discern to what extent these processes are occurring in cells during cell stress, it is necessary to measure the ability of the CoQ hydroquinone to both restore bioenergetic status and prevent membrane peroxidation and reactive oxygen species formation. This chapter reviews the current state of knowledge on the mechanism of CoQ-mediated cytoprotection. Findings that suggest that CoQ1 (ubiquinone-5) may be the optimal analog capable of protecting cells against cytotoxicity ensuing from Complex I inhibition are presented in the chapter. The chapter describes the cytoprotective activities of CoQ and diversity of antioxidant/pro-oxidant capacity between different CoQ analogs. Protection against reductive stress caused by complex I inhibition in isolated rat hepatocytes is explained, and spectrophotometric determination of cellular NQO1 activity is described in the chapter. Measuring the cytoprotective effect of CoQ analogs on complex I inhibited hepatocytes is also elaborated in the chapter.

Collaboration


Dive into the Tom S. Chan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John X. Wilson

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge