Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tom Struys is active.

Publication


Featured researches published by Tom Struys.


Pharmacology & Therapeutics | 2014

Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis.

Annelies Bronckaers; Petra Hilkens; Wendy Martens; Pascal Gervois; Jessica Ratajczak; Tom Struys; Ivo Lambrichts

Mesenchymal stem cells or multipotent stromal cells (MSCs) have initially captured attention in the scientific world because of their differentiation potential into osteoblasts, chondroblasts and adipocytes and possible transdifferentiation into neurons, glial cells and endothelial cells. This broad plasticity was originally hypothesized as the key mechanism of their demonstrated efficacy in numerous animal models of disease as well as in clinical settings. However, there is accumulating evidence suggesting that the beneficial effects of MSCs are predominantly caused by the multitude of bioactive molecules secreted by these remarkable cells. Numerous angiogenic factors, growth factors and cytokines have been discovered in the MSC secretome, all have been demonstrated to alter endothelial cell behavior in vitro and induce angiogenesis in vivo. As a consequence, MSCs have been widely explored as a promising treatment strategy in disorders caused by insufficient angiogenesis such as chronic wounds, stroke and myocardial infarction. In this review, we will summarize into detail the angiogenic factors found in the MSC secretome and their therapeutic mode of action in pathologies caused by limited blood vessel formation. Also the application of MSC as a vehicle to deliver drugs and/or genes in (anti-)angiogenesis will be discussed. Furthermore, the literature describing MSC transdifferentiation into endothelial cells will be evaluated critically.


PLOS ONE | 2013

Angiogenic Properties of Human Dental Pulp Stem Cells

Annelies Bronckaers; Petra Hilkens; Yanick Fanton; Tom Struys; Pascal Gervois; Constantinus Politis; Wendy Martens; Ivo Lambrichts

Angiogenesis, the formation of capillaries from pre-existing blood vessels, is a key process in tissue engineering. If blood supply cannot be established rapidly, there is insufficient oxygen and nutrient transport and necrosis of the implanted tissue will occur. Recent studies indicate that the human dental pulp contains precursor cells, named dental pulp stem cells (hDPSC) that show self-renewal and multilineage differentiation capacity. Since these cells can be easily isolated, cultured and cryopreserved, they represent an attractive stem cell source for tissue engineering. Until now, only little is known about the angiogenic abilities and mechanisms of the hDPSC. In this study, the angiogenic profile of both cell lysates and conditioned medium of hDPSC was determined by means of an antibody array. Numerous pro-and anti-angiogenic factors such as vascular endothelial growth factor (VEGF), monocyte chemotactic protein-1 (MCP-1), plasminogen activator inhibitor-1 (PAI-1) and endostatin were found both at the mRNA and protein level. hDPSC had no influence on the proliferation of the human microvascular endothelial cells (HMEC-1), but were able to significantly induce HMEC-1 migration in vitro. Addition of the PI3K-inhibitor LY294002 and the MEK-inhibitor U0126 to the HMEC-1 inhibited this effect, suggesting that both Akt and ERK pathways are involved in hDPSC-mediated HMEC-1 migration. Antibodies against VEGF also abolished the chemotactic actions of hDPSC. Furthermore, in the chicken chorioallantoic membrane (CAM) assay, hDPSC were able to significantly induce blood vessel formation. In conclusion, hDPSC have the ability to induce angiogenesis, meaning that this stem cell population has a great clinical potential, not only for tissue engineering but also for the treatment of chronic wounds, stroke and myocardial infarctions.


Cell and Tissue Research | 2013

Effect of isolation methodology on stem cell properties and multilineage differentiation potential of human dental pulp stem cells

Petra Hilkens; Pascal Gervois; Yanick Fanton; Johan Vanormelingen; Wendy Martens; Tom Struys; Constantinus Politis; Ivo Lambrichts; Annelies Bronckaers

Dental pulp stem cells (DPSCs) are an attractive alternative mesenchymal stem cell (MSC) source because of their isolation simplicity compared with the more invasive methods associated with harvesting other MSC sources. However, the isolation method to be favored for obtaining DPSC cultures remains under discussion. This study compares the stem cell properties and multilineage differentiation potential of DPSCs obtained by the two most widely adapted isolation procedures. DPSCs were isolated either by enzymatic digestion of the pulp tissue (DPSC-EZ) or by the explant method (DPSC-OG), while keeping the culture media constant throughout all experiments and in both isolation methods. Assessment of the stem cell properties of DPSC-EZ and DPSC-OG showed no significant differences between the two groups with regard to proliferation rate and colony formation. Phenotype analysis indicated that DPSC-EZ and DPSC-OG were positive for CD29, CD44, CD90, CD105, CD117 and CD146 expression without any significant differences. The multilineage differentiation potential of both stem cell types was confirmed by using standard immuno(histo/cyto)chemical staining together with an in-depth ultrastructural analysis by means of transmission electron microscopy. Our results indicate that both DPSC-EZ and DPSC-OG could be successfully differentiated into adipogenic, chrondrogenic and osteogenic cell types, although the adipogenic differentiation of both stem cell populations was incomplete. The data suggest that both the enzymatic digestion and outgrowth method can be applied to obtain a suitable autologous DPSC resource for tissue replacement therapies of both bone and cartilage.


The FASEB Journal | 2014

Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue-engineered collagen construct in vitro

Wendy Martens; Kathleen Sanen; Melanie Georgiou; Tom Struys; Annelies Bronckaers; Marcel Ameloot; James B. Phillips; Ivo Lambrichts

In the present study, we evaluated the differentiation potential of human dental pulp stem cells (hDPSCs) toward Schwann cells, together with their functional capacity with regard to myelination and support of neurite outgrowth in vitro. Successful Schwann cell differentiation was confirmed at the morphological and ultrastructural level by transmission electron microscopy. Furthermore, compared to undifferentiated hDPSCs, immunocytochemistry and ELISA tests revealed increased glial marker expression and neurotrophic factor secretion of differentiated hDPSCs (d‐hDPSCs), which promoted survival and neurite outgrowth in 2‐dimensional dorsal root ganglia cultures. In addition, neurites were myelinated by d‐hDPSCs in a 3‐dimensional collagen type I hydrogel neural tissue construct. This engineered construct contained aligned columns of d‐hDPSCs that supported and guided neurite outgrowth. Taken together, these findings provide the first evidence that hDPSCs are able to undergo Schwann cell differentiation and support neural outgrowth in vitro, proposing them to be good candidates for cell‐based therapies as treatment for peripheral nerve injury.—Martens, W., Sanen, K., Georgiou, M., Struys, T., Bronckaers, A., Ameloot, M., Phillips, J., Lambrichts, I. Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue‐engineered collagen construct in vitro. FASEB J. 28, 1634–1643 (2014). www.fasebj.org


Stem Cells and Development | 2015

Neurogenic Maturation of Human Dental Pulp Stem Cells Following Neurosphere Generation Induces Morphological and Electrophysiological Characteristics of Functional Neurons

Pascal Gervois; Tom Struys; Petra Hilkens; Annelies Bronckaers; Jessica Ratajczak; Constantinus Politis; Bert Brône; Ivo Lambrichts; Wendy Martens

Cell-based therapies are emerging as an alternative treatment option to promote functional recovery in patients suffering from neurological disorders, which are the major cause of death and permanent disability. The present study aimed to differentiate human dental pulp stem cells (hDPSCs) toward functionally active neuronal cells in vitro. hDPSCs were subjected to a two-step protocol. First, neuronal induction was acquired through the formation of neurospheres, followed by neuronal maturation, based on cAMP and neurotrophin-3 (NT-3) signaling. At the ultrastructural level, it was shown that the intra-spheral microenvironment promoted intercellular communication. hDPSCs grew out of the neurospheres in vitro and established a neurogenic differentiated hDPSC culture (d-hDPSCs) upon cAMP and NT-3 signaling. d-hDPSCs were characterized by the increased expression of neuronal markers such as neuronal nuclei, microtubule-associated protein 2, neural cell adhesion molecule, growth-associated protein 43, synapsin I, and synaptophysin compared with nondifferentiated hDPSCs. Enzyme-linked immunosorbent assay demonstrated that the secretion of brain-derived neurotrophic factor, vascular endothelial growth factor, and nerve growth factor differed between d-hDPSCs and hDPSCs. d-hDPSCs acquired neuronal features, including multiple intercommunicating cytoplasmic extensions and increased vesicular transport, as shown by the electron microscopic observation. Patch clamp analysis demonstrated the functional activity of d-hDPSCs by the presence of tetrodotoxin- and tetraethyl ammonium-sensitive voltage-gated sodium and potassium channels, respectively. A subset of d-hDPSCs was able to fire a single action potential. The results reported in this study demonstrate that hDPSCs are capable of neuronal commitment following neurosphere formation, characterized by distinct morphological and electrophysiological properties of functional neuronal cells.


Cells Tissues Organs | 2011

Ultrastructural and immunocytochemical analysis of multilineage differentiated human dental pulp- and umbilical cord-derived mesenchymal stem cells

Tom Struys; Marjan Moreels; Wendy Martens; Rheinhilde Donders; Esther Wolfs; Ivo Lambrichts

Mesenchymal stem cells (MSCs) are one of the most promising stem cell types due to their availability and relatively simple requirements for in vitro expansion and genetic manipulation. Besides the well-characterized MSCs derived from bone marrow, there is growing evidence suggesting that dental pulp and the umbilical cord matrix both contain a substantial amount of cells having properties similar to those of MSCs. In order to assess the potential of dental pulp-derived MSCs (DPSC) and umbilical cord-derived MSCs (UCSC) in future clinical applications, it is essential to gain more insight into their differentiation capacity and to evaluate the tissues formed by these cells. In the present study, the morphological and ultrastructural characteristics of DPSC and UCSC induced towards osteogenic, adipogenic, and chondrogenic lineages were investigated. Cultured DPSC and UCSC showed a similar expression pattern of antigens characteristic of MSCs including CD105, CD29, CD44, CD146, and STRO-1. Under appropriate culture conditions, both DPSC and UCSC showed chondrogenic and osteogenic potential. Adipogenesis could be only partially induced in DPSC resulting in the de novo expression of fatty acid binding protein (FABP), whereas UCSC expressed FABP combined with a very high accumulation of lipid droplets in the cytoplasm. Our results demonstrate, at the biochemical and ultrastructural level, that DPSC display at least bilineage potential, whereas UCSC, which are developmentally more primitive cells, show trilineage potential. We emphasize that transmission electron microscopical analysis is useful to elucidate detailed structural information and provides indisputable evidence of differentiation. These findings highlight their potential therapeutic value for cell-based tissue engineering.


Cells Tissues Organs | 2012

Expression Pattern of Basal Markers in Human Dental Pulp Stem Cells and Tissue

Wendy Martens; Esther Wolfs; Tom Struys; Constantinus Politis; Annelies Bronckaers; Ivo Lambrichts

Dental pulp stem cells (DPSC) have been characterized as a multipotent stem cell population, with the ability to differentiate into mesodermal and neural cell lineages. Although ‘de novo’ expression of neural markers after differentiation is mostly considered as proof of differentiation, expression of these markers in undifferentiated DPSC is not well described. Therefore, an immunocytochemical analysis was performed to evaluate the neural marker expression of undifferentiated human DPSC (hDPSC) in in vitro cultures. Undifferentiated hDPSC uniformly expressed neural markers β-III-tubulin, S100 protein and synaptophysin. A subset of the population showed a positive immune-reactivity for galactocerebroside, neurofilament and nerve growth factor receptor p75. Furthermore, the location of possible stem cell niches, present in young dental pulp tissue, was determined by means of immunohistochemistry based on mesenchymal and neural marker expression. The results demonstrated the presence of a perivascular niche and a second stem cell niche at the cervical area. In adult dental pulp, only a perivascular niche could be observed. Based on the expression of neural markers in naïve DPSC, it has to be taken into account that not only the marker expression upon neural differentiation must be analyzed, but an ultrastructural analysis of the morphological changes and functional studies must also be performed to confirm a successful differentiation.


Stem Cell Research | 2014

Pro-angiogenic impact of dental stem cells in vitro and in vivo.

Petra Hilkens; Yanick Fanton; Wendy Martens; Pascal Gervois; Tom Struys; Constantinus Politis; Ivo Lambrichts; Annelies Bronckaers

Within the field of dental tissue engineering, the establishment of adequate tissue vascularization is one of the most important burdens to overcome. As vascular access within the tooth is restricted by the apical foramen, it is of major importance to implement effective vascularization strategies in order to recreate viable components of teeth and periodontal tissues. However, while the current regenerative approaches focus on the use of dental stem cells (DSCs), little is known about these cells and their ability to promote angiogenesis. Therefore, the present study aimed to elucidate the paracrine angiogenic properties of postnatal DSCs, in particular dental pulp stem cells (DPSCs), stem cells from the apical papilla (SCAPs) and dental follicle precursor cells (FSCs). An antibody array, together with RT-PCR and ELISA, pointed out the differential expression of pro-angiogenic as well as anti-angiogenic factors by cultured DSCs and human gingival fibroblasts (HGF-1). Despite the secretion of proliferation-promoting factors, DSCs caused no notable increase in the proliferation of human microvascular endothelial cells (HMEC-1). With regard to other aspects of the angiogenic cascade, DPSCs, SCAPs and HGF-1 significantly promoted endothelial migration in a transwell migration assay. DPSCs also had a pronounced effect on endothelial tubulogenesis, as was shown by an in vitro Matrigel™ assay. In the last part of this study, a chorioallantoic membrane assay demonstrated a sustained pro-angiogenic impact of DPSCs and SCAPs in an in vivo setting. Collectively, these data indicate a predominant pro-angiogenic influence of DPSCs and SCAPS in vitro and in vivo in comparison to FSCs, suggesting that both stem cell populations could potentially promote the vascularization of regenerated dental tissues.


The Journal of Nuclear Medicine | 2013

18F-FDG Labeling of Mesenchymal Stem Cells and Multipotent Adult Progenitor Cells for PET Imaging: Effects on Ultrastructure and Differentiation Capacity

Esther Wolfs; Tom Struys; Tineke Notelaers; Scott J. Roberts; Abhishek Sohni; Guy Bormans; Koen Van Laere; Frank P. Luyten; Olivier Gheysens; Ivo Lambrichts; Catherine M. Verfaillie; Christophe Deroose

Because of their extended differentiation capacity, stem cells have gained great interest in the field of regenerative medicine. For the development of therapeutic strategies, more knowledge on the in vivo fate of these cells has to be acquired. Therefore, stem cells can be labeled with radioactive tracer molecules such as 18F-FDG, a positron-emitting glucose analog that is taken up and metabolically trapped by the cells. The aim of this study was to optimize the radioactive labeling of mesenchymal stem cells (MSCs) and multipotent adult progenitor cells (MAPCs) in vitro with 18F-FDG and to investigate the potential radiotoxic effects of this labeling procedure with a range of techniques, including transmission electron microscopy (TEM). Methods: Mouse MSCs and rat MAPCs were used for 18F-FDG uptake kinetics and tracer retention studies. Cell metabolic activity, proliferation, differentiation and ultrastructural changes after labeling were evaluated using an Alamar Blue reagent, doubling time calculations and quantitative TEM, respectively. Additionally, mice were injected with MSCs and MAPCs prelabeled with 18F-FDG, and stem cell biodistribution was investigated using small-animal PET. Results: The optimal incubation period for 18F-FDG uptake was 60 min. Significant early tracer washout was observed, with approximately 30%–40% of the tracer being retained inside the cells 3 h after labeling. Cell viability, proliferation, and differentiation capacity were not severely affected by 18F-FDG labeling. No major changes at the ultrastructural level, considering mitochondrial length, lysosome size, the number of lysosomes, the number of vacuoles, and the average rough endoplasmic reticulum width, were observed with TEM. Small-animal PET experiments with radiolabeled MAPCs and MSCs injected intravenously in mice showed a predominant accumulation in the lungs and a substantial elution of 18F-FDG from the cells. Conclusion: MSCs and MAPCs can be successfully labeled with 18F-FDG for molecular imaging purposes. The main cellular properties are not rigorously affected. TEM confirmed that the cells’ ultrastructural properties are not influenced by 18F-FDG labeling. Small-animal PET studies confirmed the intracellular location of the tracer and the possibility of imaging injected prelabeled stem cell types in vivo. Therefore, direct labeling of MSCs and MAPCs with 18F-FDG is a suitable technique to noninvasively assess cell delivery and early retention with PET.


Journal of Dental Research | 2009

Primary Cilia of Odontoblasts: Possible Role in Molar Morphogenesis

B Thivichon-Prince; M.-L. Couble; A Giamarchi; P Delmas; Benedicte Franco; L Romio; Tom Struys; Ivo Lambrichts; D Ressnikoff; H. Magloire; F. Bleicher

A primary cilium, a sensory organelle present in almost every vertebrate cell, is regularly described in odontoblasts, projecting from the surfaces of the cells. Based on the hypothesis that the primary cilium is crucial both for dentin formation and possibly in tooth pain transmission, we have investigated the expression and localization of the main cilium components and involvement of the OFD1 gene in tooth morphogenesis. Odontoblasts in vitro express tubulin, inversin, rootletin, OFD1, BBS4, BBS6, ALMS1, KIF3A, PC1, and PC2. In vivo, cilia are aligned parallel to the dentin walls, with the top part oriented toward the pulp core. Close relationships between cilium and nerve fibers are evidenced. Calcium channels are concentrated in the vicinity of the basal body. Analysis of these data suggests a putative role of cilia in sensing the microenvironment, probably related to dentin secretion. This hypothesis is enhanced by the huge defects observed on molars from Ofd1 knockout mice, showing undifferentiated dentin-forming cells.

Collaboration


Dive into the Tom Struys's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tom Dresselaers

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catherine M. Verfaillie

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uwe Himmelreich

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uwe Himmelreich

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Constantinus Politis

Catholic University of Leuven

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge