Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tom W. Allen is active.

Publication


Featured researches published by Tom W. Allen.


Phytopathology | 2011

Meta-analysis of yield response of hybrid field corn to foliar fungicides in the U.S. corn belt

P. A. Paul; L. V. Madden; Carl A. Bradley; A. E. Robertson; Gary P. Munkvold; Gregory Shaner; Kiersten A. Wise; D. K. Malvick; Tom W. Allen; A. Grybauskas; Paul C. Vincelli; Paul D. Esker

The use of foliar fungicides on field corn has increased greatly over the past 5 years in the United States in an attempt to increase yields, despite limited evidence that use of the fungicides is consistently profitable. To assess the value of using fungicides in grain corn production, random-effects meta-analyses were performed on results from foliar fungicide experiments conducted during 2002 to 2009 in 14 states across the United States to determine the mean yield response to the fungicides azoxystrobin, pyraclostrobin, propiconazole + trifloxystrobin, and propiconazole + azoxystrobin. For all fungicides, the yield difference between treated and nontreated plots was highly variable among studies. All four fungicides resulted in a significant mean yield increase relative to the nontreated plots (P < 0.05). Mean yield difference was highest for propiconazole + trifloxystrobin (390 kg/ha), followed by propiconazole + azoxystrobin (331 kg/ha) and pyraclostrobin (256 kg/ha), and lowest for azoxystrobin (230 kg/ha). Baseline yield (mean yield in the nontreated plots) had a significant effect on yield for propiconazole + azoxystrobin (P < 0.05), whereas baseline foliar disease severity (mean severity in the nontreated plots) significantly affected the yield response to pyraclostrobin, propiconazole + trifloxystrobin, and propiconazole + azoxystrobin but not to azoxystrobin. Mean yield difference was generally higher in the lowest yield and higher disease severity categories than in the highest yield and lower disease categories. The probability of failing to recover the fungicide application cost (p(loss)) also was estimated for a range of grain corn prices and application costs. At the 10-year average corn grain price of


Plant Health Progress | 2016

Corn yield loss estimates due to diseases in the United States and Ontario, Canada from 2012 to 2015.

Daren S. Mueller; Kiersten A. Wise; Adam Sisson; Tom W. Allen; Gary C. Bergstrom; D. Bruce Bosley; Carl A. Bradley; Kirk Broders; E. Byamukama; Martin I. Chilvers; Alyssa Collins; T. R. Faske; Andrew J. Friskop; Ron W. Heiniger; Clayton A. Hollier; David C. Hooker; Tom Isakeit; T. A. Jackson-Ziems; Douglas J. Jardine; Heather M. Kelly; Kasia Kinzer; Steve R. Koenning; D. K. Malvick; Marcia McMullen; Ron F. Meyer; P. A. Paul; Alison E. Robertson; Gregory W. Roth; Damon L. Smith; Connie Tande

0.12/kg (


Plant Disease | 2014

A Coordinated Effort to Manage Soybean Rust in North America: A Success Story in Soybean Disease Monitoring

Edward J. Sikora; Tom W. Allen; Kiersten A. Wise; Gary C. Bergstrom; Carl A. Bradley; J. P. Bond; D. Brown-Rytlewski; Martin I. Chilvers; John P. Damicone; Erick DeWolf; Anne E. Dorrance; Nicholas S. Dufault; Paul D. Esker; T. R. Faske; Loren J. Giesler; N. Goldberg; J. Golod; I. R. G. Gómez; C. R. Grau; A. Grybauskas; G. Franc; R. Hammerschmidt; G. L. Hartman; R. A. Henn; D. E. Hershman; Clayton A. Hollier; Tom Isakeit; Scott A. Isard; Barry J. Jacobsen; Douglas J. Jardine

2.97/bushel) and application costs of


Journal of Economic Entomology | 2018

Impact of Corn Earworm (Lepidoptera: Noctuidae) on Field Corn (Poales: Poaceae) Yield and Grain Quality

Jenny Bibb; D. R. Cook; Angus L. Catchot; F. Musser; Scott Stewart; Billy Rogers Leonard; G. David Buntin; David L. Kerns; Tom W. Allen; J. Gore

40 to 95/ha, p(loss) for disease severity <5% was 0.55 to 0.98 for pyraclostrobin, 0.62 to 0.93 for propiconazole + trifloxystrobin, 0.58 to 0.89 for propiconazole + azoxystrobin, and 0.91 to 0.99 for azoxystrobin. When disease severity was >5%, the corresponding probabilities were 0.36 to 95, 0.25 to 0.69, 0.25 to 0.64, and 0.37 to 0.98 for the four fungicides. In conclusion, the high p(loss) values found in most scenarios suggest that the use of these foliar fungicides is unlikely to be profitable when foliar disease severity is low and yield expectation is high.


PLOS Genetics | 2017

Genomics-enabled analysis of the emergent disease cotton bacterial blight

Anne Z. Phillips; Jeffrey C. Berry; Mark C. Wilson; Anupama Vijayaraghavan; Jillian Burke; J. Imani Bunn; Tom W. Allen; Terry Wheeler; Rebecca Bart

Annual decreases in corn yield caused by diseases were estimated by surveying members of the Corn Disease Working Group in 22 corn-producing states in the United States and in Ontario, Canada, from 2012 through 2015. Estimated loss from each disease varied greatly by state and year. In general, foliar diseases such as northern corn leaf blight, gray leaf spot, and Goss’s wilt commonly caused the largest estimated yield loss in the northern United States and Ontario during nondrought years. Fusarium stalk rot and plant-parasitic nematodes caused the most estimated loss in the southernmost United States. The estimated mean economic loss due to yield loss by corn diseases in the United States and Ontario from 2012 to 2015 was


Frontiers in Plant Science | 2017

Genetic Architecture of Charcoal Rot (Macrophomina phaseolina) Resistance in Soybean Revealed Using a Diverse Panel

Sara M. Coser; R. V. Chowda Reddy; Jiaoping Zhang; Daren S. Mueller; Alemu Mengistu; Kiersten A. Wise; Tom W. Allen; Arti Singh; Asheesh K. Singh

76.51 USD per acre. The cost of disease-mitigating strategies is another potential source of profit loss. Results from this survey will provide scientists, breeders, government, and educators with data to help inform and prioritize research, policy, and educational efforts in corn pathology and disease management. M U E L L E R E T A L . , P L A N T H E A L T H P R O G R E S S 1 7 (2 0 1 6 )


Plant Health Progress | 2016

Delayed Senescence in Soybean: Terminology, Research Update, and Survey Results from Growers

C. J. Harbach; Tom W. Allen; C. R. Bowen; J. A. Davis; Curtis B. Hill; M. Leitman; B. R. Leonard; Daren S. Mueller; G. B. Padgett; X. A. Phillips; R. W. Schneider; Edward J. Sikora; A. K. Singh; G. L. Hartman

Existing crop monitoring programs determine the incidence and distribution of plant diseases and pathogens and assess the damage caused within a crop production region. These programs have traditionally used observed or predicted disease and pathogen data and environmental information to prescribe management practices that minimize crop loss. Monitoring programs are especially important for crops with broad geographic distribution or for diseases that can cause rapid and great economic losses. Successful monitoring programs have been developed for several plant diseases, including downy mildew of cucurbits, Fusarium head blight of wheat, potato late blight, and rusts of cereal crops. A recent example of a successful disease-monitoring program for an economically important crop is the soybean rust (SBR) monitoring effort within North America. SBR, caused by the fungus Phakopsora pachyrhizi, was first identified in the continental United States in November 2004. SBR causes moderate to severe yield losses globally. The fungus produces foliar lesions on soybean (Glycine max) and other legume hosts. P. pachyrhizi diverts nutrients from the host to its own growth and reproduction. The lesions also reduce photosynthetic area. Uredinia rupture the host epidermis and diminish stomatal regulation of transpiration to cause tissue desiccation and premature defoliation. Severe soybean yield losses can occur if plants defoliate during the mid-reproductive growth stages. The rapid response to the threat of SBR in North America resulted in an unprecedented amount of information dissemination and the development of a real-time, publicly available monitoring and prediction system known as the Soybean Rust-Pest Information Platform for Extension and Education (SBR-PIPE). The objectives of this article are (i) to highlight the successful response effort to SBR in North America, and (ii) to introduce researchers to the quantity and type of data generated by SBR-PIPE. Data from this system may now be used to answer questions about the biology, ecology, and epidemiology of an important pathogen and disease of soybean.


Data in Brief | 2018

Draft genome sequence of Xylaria sp., the causal agent of taproot decline of soybean in the southern United States

Sandeep Sharma; Alex Z. Zaccaron; John B. Ridenour; Tom W. Allen; Kassie Conner; Vinson P. Doyle; Trey Price; Edward J. Sikora; Raghuwinder Singh; Terry Spurlock; Maria Tomaso-Peterson; Tessie Wilkerson; Burton H. Bluhm

Abstract Corn earworm, Helicoverpa zea (Boddie), commonly infests field corn, Zea mays (L.).The combination of corn plant biology, corn earworm behavior in corn ecosystems, and field corn value renders corn earworm management with foliar insecticides noneconomical. Corn technologies containing Bacillus thuringiensis (Bt) Berliner (Bacillales: Bacillaceae) were introduced that exhibit substantial efficacy against corn earworm and may reduce mycotoxin contamination in grain. The first generation Bt traits in field corn demonstrated limited activity on corn earworm feeding on grain. The pyramided corn technologies have greater cumulative protein concentrations and higher expression throughout the plant, so these corn traits should provide effective management of this pest. Additionally, reduced kernel injury may affect physical grain quality. Experiments were conducted during 2011–2012 to investigate corn earworm impact on field corn yield and grain quality. Treatments included field corn hybrids expressing the Herculex, YieldGard, and Genuity VT Triple Pro technologies. Supplemental insecticide treatments were applied every 1–2 d from silk emergence until silk senescence to create a range of injured kernels for each technology. No significant relationship between the number of corn earworm damaged kernels and yield was observed for any technology/hybrid. In these studies, corn earworm larvae did not cause enough damage to impact yield. Additionally, no consistent relationship between corn earworm damage and aflatoxin contamination was observed. Based on these data, the economic value of pyramided Bt corn traits to corn producers, in the southern United States, appears to be from management of other lepidopteran insect pests including European and southwestern corn borer.


Standards in Genomic Sciences | 2017

The genome of the cotton bacterial blight pathogen Xanthomonas citri pv. malvacearum strain MSCT1

Kurt C. Showmaker; Mark A. Arick; Chuan-Yu Hsu; Brigitte E. Martin; Xiaoqiang Wang; Jiayuan Jia; Martin J. Wubben; Robert L. Nichols; Tom W. Allen; Daniel G. Peterson; Shi-En Lu

Cotton bacterial blight (CBB), an important disease of (Gossypium hirsutum) in the early 20th century, had been controlled by resistant germplasm for over half a century. Recently, CBB re-emerged as an agronomic problem in the United States. Here, we report analysis of cotton variety planting statistics that indicate a steady increase in the percentage of susceptible cotton varieties grown each year since 2009. Phylogenetic analysis revealed that strains from the current outbreak cluster with race 18 Xanthomonas citri pv. malvacearum (Xcm) strains. Illumina based draft genomes were generated for thirteen Xcm isolates and analyzed along with 4 previously published Xcm genomes. These genomes encode 24 conserved and nine variable type three effectors. Strains in the race 18 clade contain 3 to 5 more effectors than other Xcm strains. SMRT sequencing of two geographically and temporally diverse strains of Xcm yielded circular chromosomes and accompanying plasmids. These genomes encode eight and thirteen distinct transcription activator-like effector genes. RNA-sequencing revealed 52 genes induced within two cotton cultivars by both tested Xcm strains. This gene list includes a homeologous pair of genes, with homology to the known susceptibility gene, MLO. In contrast, the two strains of Xcm induce different clade III SWEET sugar transporters. Subsequent genome wide analysis revealed patterns in the overall expression of homeologous gene pairs in cotton after inoculation by Xcm. These data reveal important insights into the Xcm-G. hirsutum disease complex and strategies for future development of resistant cultivars.


Crop Protection | 2015

Biological control of aflatoxin is effective and economical in Mississippi field trials

Mark A. Weaver; Hamed K. Abbas; Lawrence L. Falconer; Tom W. Allen; H.C.(Lyle) Pringle; Gabe L. Sciumbato

Charcoal rot (CR) disease caused by Macrophomina phaseolina is responsible for significant yield losses in soybean production. Among the methods available for controlling this disease, breeding for resistance is the most promising. Progress in breeding efforts has been slow due to the insufficient information available on the genetic mechanisms related to resistance. Genome-wide association studies (GWAS) enable unraveling the genetic architecture of resistance and identification of causal genes. The aims of this study were to identify new sources of resistance to CR in a collection of 459 diverse plant introductions from the USDA Soybean Germplasm Core Collection using field and greenhouse screenings, and to conduct GWAS to identify candidate genes and associated molecular markers. New sources for CR resistance were identified from both field and greenhouse screening from maturity groups I, II, and III. Five significant single nucleotide polymorphism (SNP) and putative candidate genes related to abiotic and biotic stress responses are reported from the field screening; while greenhouse screening revealed eight loci associated with eight candidate gene families, all associated with functions controlling plant defense response. No overlap of markers or genes was observed between field and greenhouse screenings suggesting a complex molecular mechanism underlying resistance to CR in soybean with varied response to different environments; but our findings provide useful information for advancing breeding for CR resistance as well as the genetic mechanism of resistance.

Collaboration


Dive into the Tom W. Allen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barry R. Stewart

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge