Toma N. Glasnov
University of Graz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Toma N. Glasnov.
Chemsuschem | 2011
Muhammad Irfan; Toma N. Glasnov; C. Oliver Kappe
Microreactor technology and continuous flow processing in general are key features in making organic synthesis both more economical and environmentally friendly. Heterogeneous catalytic hydrogenation reactions under continuous flow conditions offer significant benefits compared to batch processes which are related to the unique gas-liquid-solid triphasic reaction conditions present in these transformations. In this review article recent developments in continuous flow heterogeneous catalytic hydrogenation reactions using molecular hydrogen are summarized. Available flow hydrogenation techniques, reactors, commonly used catalysts and examples of synthetic applications with an emphasis on laboratory-scale flow hydrogenation reactions are presented.
Chemistry: A European Journal | 2011
Toma N. Glasnov; C. Oliver Kappe
The popularity of dedicated microwave reactors in many academic and industrial laboratories has produced a plethora of synthetic protocols that are based on this enabling technology. In the majority of examples, transformations that require several hours when performed using conventional heating under reflux conditions reach completion in a few minutes or even seconds in sealed-vessel, autoclave-type, microwave reactors. However, one severe drawback of microwave chemistry is the difficulty in scaling this technology to a production-scale level. This Concept article demonstrates that this limitation can be overcome by translating batch microwave chemistry to scalable continuous-flow processes. For this purpose, conventionally heated micro- or mesofluidic flow devices fitted with a back-pressure regulator are employed, in which the high temperatures and pressures attainable in a sealed-vessel microwave chemistry batch experiment can be mimicked.
Chemistry: A European Journal | 2009
Toma N. Glasnov; Silvia Findenig; C. Oliver Kappe
Mizoroki-Heck couplings of aryl iodides and bromides with butyl acrylate were investigated as model systems to perform transition-metal-catalyzed transformations in continuous-flow mode. As a suitable ligandless catalyst system for the Mizoroki-Heck couplings both heterogeneous and homogeneous Pd catalysts (Pd/C and Pd acetate) were considered. In batch mode, full conversion with excellent selectivity for coupling was achieved applying high-temperature microwave conditions with Pd levels as low as 10(-3) mol %. In continuous-flow mode with Pd/C as a catalyst, significant Pd leaching from the heterogeneous catalyst was observed as these Mizoroki-Heck couplings proceed by a homogeneous mechanism involving soluble Pd colloids/nanoparticles. By applying low levels of Pd acetate as homogeneous Pd precatalyst, successful continuous-flow Mizoroki-Heck transformations were performed in a high-temperature/pressure flow reactor. For both aryl iodides and bromides, high isolated product yields of the cinnamic esters were obtained. Mechanistic issues involving the Pd-catalyzed Mizoroki-Heck reactions are discussed.
Journal of Organic Chemistry | 2008
Valentin A. Chebanov; Vyacheslav E. Saraev; Sergey M. Desenko; Vitaliy N. Chernenko; Irina V. Knyazeva; Ulrich Groth; Toma N. Glasnov; C. Oliver Kappe
Regio- and chemoselective multicomponent protocols for the synthesis of 1,4,6,7,8,9-hexahydro-1H-pyrazolo[3,4-b]quinolin-5-ones, 5,6,7,9-tetrahydropyrazolo[5,1-b]quinazolin-8-ones, and 5a-hydroxy-4,5,5a,6,7,8-hexahydropyrazolo[4,3-c]quinolizin-9-ones starting from 5-amino-3-phenylpyrazole, cyclic 1,3-dicarbonyl compounds and aromatic aldehydes are described. Whereas the three-component coupling in ethanol under reflux conditions provides mixtures of pyrazoloquinolinones and pyrazoloquinazolinones, the condensation can be successfully tuned toward the formation pyrazoloquinolinones (Hantzsch-type dihydropyridines) by performing the reaction at 150 degrees C in the presence of triethylamine base applying sealed vessel microwave or conventional heating. On the other hand, using sonication at room temperature under neutral conditions favors the formation of the isomeric pyrazoloquinazolinones (Biginelli-type dihydropyrimidines). These products are also obtained when the three-component condensation is executed in the presence of trimethylsilylchloride as reaction mediator at high temperatures. A third reaction pathway leading to pyrazoloquinolizinones in a ring-opening/recyclization sequence can be accessed by switching from triethylamine to a more nucleophilic base such as sodium ethoxide or potassium tert-butoxide. The reaction mechanism and intermediates leading to these three distinct tricyclic condensation products are discussed.
British Journal of Pharmacology | 2012
H Schleifer; Michaela Lichtenegger; R Oppenrieder; I Derler; I Frischauf; Toma N. Glasnov; Christian Oliver Kappe; C Romanin; Klaus Groschner
Pyrazole derivatives have recently been suggested as selective blockers of transient receptor potential cation (TRPC) channels but their ability to distinguish between the TRPC and Orai pore complexes is ill‐defined. This study was designed to characterize a series of pyrazole derivatives in terms of TRPC/Orai selectivity and to delineate consequences of selective suppression of these pathways for mast cell activation.
Organic Letters | 2011
Muhammad Irfan; Toma N. Glasnov; C. Oliver Kappe
Several important types of ozonolysis reactions have been performed in a continuous flow device that is able to perform both the ozonolysis and quenching steps in flow mode. This technique allows safe and scalable ozonolysis reactions to be performed on a laboratory scale.
Chemistry: A European Journal | 2009
Muhammed Irfan; Michael Fuchs; Toma N. Glasnov; C. Oliver Kappe
The concept of specific microwave effects in solid/liquid catalytic processes resulting from the selective heating of a microwave-absorbing heterogeneous transition-metal catalyst by using 2.45 GHz microwave irradiation was evaluated. As model transformations Ni/C-, Cu/C-, Pd/C-, and Pd/Al2O3-catalyzed carbon-carbon/carbon-heteroatom cross-couplings and hydrogenation reactions were investigated. To probe the existence of specific microwave effects by means of selective catalyst heating in these transformations, control experiments comparing microwave dielectric heating and conventional thermal heating at the same reaction temperature were performed. Although the supported metal catalysts were experimentally found to be strongly microwave absorbing, for all chemistry examples investigated herein no differences in reaction rate or selectivity between microwave and conventional heating experiments under carefully controlled conditions were observed. This was true also for reactions that use low-absorbing or microwave transparent solvents, and was independent of the microwave absorbtivity of the catalyst support material. In the case of hydrogenation reactions, the stirring speed was found to be a critical factor on the mass transfer between gas and liquid phase, influencing the rate of the hydrogenation in both microwave and conventionally heated experiments.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Michael Poteser; Hannes Schleifer; Michaela Lichtenegger; Michaela Schernthaner; Thomas Stockner; Christian Oliver Kappe; Toma N. Glasnov; Christoph Romanin; Klaus Groschner
Cardiac transient receptor potential canonical (TRPC) channels are crucial upstream components of Ca2+/calcineurin/nuclear factor of activated T cells (NFAT) signaling, thereby controlling cardiac transcriptional programs. The linkage between TRPC-mediated Ca2+ signals and NFAT activity is still incompletely understood. TRPC conductances may govern calcineurin activity and NFAT translocation by supplying Ca2+ either directly through the TRPC pore into a regulatory microdomain or indirectly via promotion of voltage-dependent Ca2+ entry. Here, we show that a point mutation in the TRPC3 selectivity filter (E630Q), which disrupts Ca2+ permeability but preserves monovalent permeation, abrogates agonist-induced NFAT signaling in HEK293 cells as well as in murine HL-1 atrial myocytes. The E630Q mutation fully retains the ability to convert phospholipase C-linked stimuli into L-type (CaV1.2) channel-mediated Ca2+ entry in HL-1 cells, thereby generating a dihydropyridine-sensitive Ca2+ signal that is isolated from the NFAT pathway. Prevention of PKC-dependent modulation of TRPC3 by either inhibition of cellular kinase activity or mutation of a critical phosphorylation site in TRPC3 (T573A), which disrupts targeting of calcineurin into the channel complex, converts cardiac TRPC3-mediated Ca2+ signaling into a transcriptionally silent mode. Thus, we demonstrate a dichotomy of TRPC-mediated Ca2+ signaling in the heart constituting two distinct pathways that are differentially linked to gene transcription. Coupling of TRPC3 activity to NFAT translocation requires microdomain Ca2+ signaling by PKC-modified TRPC3 complexes. Our results identify TRPC3 as a pivotal signaling gateway in Ca2+-dependent control of cardiac gene expression.
Journal of Organic Chemistry | 2011
David Obermayer; Toma N. Glasnov; C. Oliver Kappe
A series of 4-(pyrazol-1-yl)carboxanilides active as inhibitors of canonical transient receptor potential channels were synthesized in an efficient three-step protocol using controlled microwave heating. The general synthetic strategy involves condensation of 4-nitrophenylhydrazine with appropriate 1,3-dicarbonyl building blocks, followed by reduction of the nitro group to the amine, which is then amidated with carboxylic acids. Compared to the conventional protocol a dramatic reduction in overall processing time from ~2 days to a few minutes was achieved, accompanied by significantly improved product yields. In addition, the first two steps in the synthetic pathway were also performed under continuous flow conditions providing similar isolated product yields. As an alternative to the three-step protocol, a novel two-step route to the desired 4-(pyrazol-1-yl)carboxanilides was devised involving condensation of 4-bromophenylhydrazine with appropriate 1,3-dicarbonyl building blocks, followed by Pd-catalyzed Buchwald-Hartwig amidation with carboxylic acid amides.
Organic Letters | 2010
Jitender B. Bariwal; Denis S. Ermolat’ev; Toma N. Glasnov; Kristof Van Hecke; Vaibhav P. Mehta; Luc Van Meervelt; C. Oliver Kappe; Erik V. Van der Eycken
An unprecedented, diversity-oriented strategy for the generation of 6,7-dihydro-5H-dibenzo[c,e]azepines and 5,6,7,8-tetrahydrodibenzo[c,e]azocines by a microwave-assisted copper-catalyzed intramolecular A(3)-coupling reaction is presented.