Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomas A. Prolla is active.

Publication


Featured researches published by Tomas A. Prolla.


Nature Genetics | 2000

Gene-expression profile of the ageing brain in mice

Cheol Koo Lee; Richard Weindruch; Tomas A. Prolla

Ageing of the brain leads to impairments in cognitive and motor skills, and is the major risk factor for several common neurological disorders such as Alzheimer disease (AD) and Parkinson disease (PD). Recent studies suggest that normal brain ageing is associated with subtle morphological and functional alterations in specific neuronal circuits, as opposed to large-scale neuronal loss. In fact, ageing of the central nervous system in diverse mammalian species shares many features, such as atrophy of pyramidal neurons, synaptic atrophy, decrease of striatal dopamine receptors, accumulation of fluorescent pigments, cytoskeletal abnormalities, and reactive astrocytes and microglia. To provide the first global analysis of brain ageing at the molecular level, we used oligonucleotide arrays representing 6,347 genes to determine the gene-expression profile of the ageing neocortex and cerebellum in mice. Ageing resulted in a gene-expression profile indicative of an inflammatory response, oxidative stress and reduced neurotrophic support in both brain regions. At the transcriptional level, brain ageing in mice displays parallels with human neurodegenerative disorders. Caloric restriction, which retards the ageing process in mammals, selectively attenuated the age-associated induction of genes encoding inflammatory and stress responses.


Cell | 2006

SIRT4 Inhibits Glutamate Dehydrogenase and Opposes the Effects of Calorie Restriction in Pancreatic β Cells

Marcia C. Haigis; Raul Mostoslavsky; Kevin M. Haigis; Kamau Fahie; Danos C. Christodoulou; Andrew J. Murphy; David M. Valenzuela; George D. Yancopoulos; Margaret Karow; Gil Blander; Cynthia Wolberger; Tomas A. Prolla; Richard Weindruch; Frederick W. Alt; Leonard Guarente

Sir2 is an NAD-dependent deacetylase that connects metabolism with longevity in yeast, flies, and worms. Mammals have seven Sir2 homologs (SIRT1-7). We show that SIRT4 is a mitochondrial enzyme that uses NAD to ADP-ribosylate and downregulate glutamate dehydrogenase (GDH) activity. GDH is known to promote the metabolism of glutamate and glutamine, generating ATP, which promotes insulin secretion. Loss of SIRT4 in insulinoma cells activates GDH, thereby upregulating amino acid-stimulated insulin secretion. A similar effect is observed in pancreatic beta cells from mice deficient in SIRT4 or on the dietary regimen of calorie restriction (CR). Furthermore, GDH from SIRT4-deficient or CR mice is insensitive to phosphodiesterase, an enzyme that cleaves ADP-ribose, suggesting the absence of ADP-ribosylation. These results indicate that SIRT4 functions in beta cell mitochondria to repress the activity of GDH by ADP-ribosylation, thereby downregulating insulin secretion in response to amino acids, effects that are alleviated during CR.


Cell | 2010

Sirt3 Mediates Reduction of Oxidative Damage and Prevention of Age-Related Hearing Loss under Caloric Restriction

Shinichi Someya; Wei Yu; William C. Hallows; Jinze Xu; James M. Vann; Christiaan Leeuwenburgh; Masaru Tanokura; John M. Denu; Tomas A. Prolla

Caloric restriction (CR) extends the life span and health span of a variety of species and slows the progression of age-related hearing loss (AHL), a common age-related disorder associated with oxidative stress. Here, we report that CR reduces oxidative DNA damage in multiple tissues and prevents AHL in wild-type mice but fails to modify these phenotypes in mice lacking the mitochondrial deacetylase Sirt3, a member of the sirtuin family. In response to CR, Sirt3 directly deacetylates and activates mitochondrial isocitrate dehydrogenase 2 (Idh2), leading to increased NADPH levels and an increased ratio of reduced-to-oxidized glutathione in mitochondria. In cultured cells, overexpression of Sirt3 and/or Idh2 increases NADPH levels and protects from oxidative stress-induced cell death. Therefore, our findings identify Sirt3 as an essential player in enhancing the mitochondrial glutathione antioxidant defense system during CR and suggest that Sirt3-dependent mitochondrial adaptations may be a central mechanism of aging retardation in mammals.


Cell | 2010

Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations

Hsiuchen Chen; Marc Vermulst; Yun E. Wang; Anne Chomyn; Tomas A. Prolla; J. Michael McCaffery; David C. Chan

Mitochondria are highly mobile and dynamic organelles that continually fuse and divide. These processes allow mitochondria to exchange contents, including mitochondrial DNA (mtDNA). Here we examine the functions of mitochondrial fusion in differentiated skeletal muscle through conditional deletion of the mitofusins Mfn1 and Mfn2, mitochondrial GTPases essential for fusion. Loss of the mitofusins causes severe mitochondrial dysfunction, compensatory mitochondrial proliferation, and muscle atrophy. Mutant mice have severe mtDNA depletion in muscle that precedes physiological abnormalities. Moreover, the mitochondrial genomes of the mutant muscle rapidly accumulate point mutations and deletions. In a related experiment, we find that disruption of mitochondrial fusion strongly increases mitochondrial dysfunction and lethality in a mouse model with high levels of mtDNA mutations. With its dual function in safeguarding mtDNA integrity and preserving mtDNA function in the face of mutations, mitochondrial fusion is likely to be a protective factor in human disorders associated with mtDNA mutations.


Cell | 2008

SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging.

Philipp Oberdoerffer; Shaday Michan; Michael McVay; Raul Mostoslavsky; James M. Vann; Sang-Kyu Park; Andrea Hartlerode; Judith Stegmüller; Angela Hafner; Patrick Loerch; Sarah M. Wright; Kevin D. Mills; Azad Bonni; Bruce A. Yankner; Ralph Scully; Tomas A. Prolla; Frederick W. Alt; David A. Sinclair

Genomic instability and alterations in gene expression are hallmarks of eukaryotic aging. The yeast histone deacetylase Sir2 silences transcription and stabilizes repetitive DNA, but during aging or in response to a DNA break, the Sir complex relocalizes to sites of genomic instability, resulting in the desilencing of genes that cause sterility, a characteristic of yeast aging. Using embryonic stem cells, we show that mammalian Sir2, SIRT1, represses repetitive DNA and a functionally diverse set of genes across the mouse genome. In response to DNA damage, SIRT1 dissociates from these loci and relocalizes to DNA breaks to promote repair, resulting in transcriptional changes that parallel those in the aging mouse brain. Increased SIRT1 expression promotes survival in a mouse model of genomic instability and suppresses age-dependent transcriptional changes. Thus, DNA damage-induced redistribution of SIRT1 and other chromatin-modifying proteins may be a conserved mechanism of aging in eukaryotes.


PLOS ONE | 2008

A Low Dose of Dietary Resveratrol Partially Mimics Caloric Restriction and Retards Aging Parameters in Mice

Jamie L. Barger; Tsuyoshi Kayo; James M. Vann; Edward B. Arias; Jelai Wang; Timothy A. Hacker; Ying Wang; Daniel Raederstorff; Jason D. Morrow; Christiaan Leeuwenburgh; David B. Allison; Kurt W. Saupe; Gregory D. Cartee; Richard Weindruch; Tomas A. Prolla

Resveratrol in high doses has been shown to extend lifespan in some studies in invertebrates and to prevent early mortality in mice fed a high-fat diet. We fed mice from middle age (14-months) to old age (30-months) either a control diet, a low dose of resveratrol (4.9 mg kg−1 day−1), or a calorie restricted (CR) diet and examined genome-wide transcriptional profiles. We report a striking transcriptional overlap of CR and resveratrol in heart, skeletal muscle and brain. Both dietary interventions inhibit gene expression profiles associated with cardiac and skeletal muscle aging, and prevent age-related cardiac dysfunction. Dietary resveratrol also mimics the effects of CR in insulin mediated glucose uptake in muscle. Gene expression profiling suggests that both CR and resveratrol may retard some aspects of aging through alterations in chromatin structure and transcription. Resveratrol, at doses that can be readily achieved in humans, fulfills the definition of a dietary compound that mimics some aspects of CR.


Free Radical Biology and Medicine | 2003

THE SELENOPROTEIN GPX4 IS ESSENTIAL FOR MOUSE DEVELOPMENT AND PROTECTS FROM RADIATION AND OXIDATIVE DAMAGE INSULTS

Levi Yant; Qitao Ran; Lin Rao; Holly Van Remmen; Toru Shibatani; Jason G. Belter; Lucia Motta; Arlan Richardson; Tomas A. Prolla

Lipid peroxidation has been implicated in a variety of pathophysiological processes, including inflammation, atherogenesis, neurodegeneration, and the ageing process. Phospholipid hydroperoxide glutathione peroxidase (GPX4) is the only major antioxidant enzyme known to directly reduce phospholipid hydroperoxides within membranes and lipoproteins, acting in conjunction with alpha tocopherol (vitamin E) to inhibit lipid peroxidation. Here we describe the generation and characterization of GPX4-deficient mice by targeted disruption of the murine Gpx4 locus through homologous recombination in embryonic stem cells. Gpx4(-/-) embryos die in utero by midgestation (E7.5) and are associated with a lack of normal structural compartmentalization. Gpx4(+/-) mice display reduced levels of Gpx4 mRNA and protein in various tissues. Interestingly, cell lines derived from Gpx4(+/-) mice are markedly sensitive to inducers of oxidative stress, including gamma-irradiation, paraquat, tert-butylhydroperoxide, and hydrogen peroxide, as compared to cell lines derived from wild-type control littermates. Gpx4(+/-) mice also display reduced survival in response to gamma-irradiation. Our observations establish GPX4 as an essential antioxidant enzyme in mice and suggest that it performs broad functions as a component of the mammalian antioxidant network.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Influences of aging and caloric restriction on the transcriptional profile of skeletal muscle from rhesus monkeys

Tsuyoshi Kayo; David B. Allison; Richard Weindruch; Tomas A. Prolla

In laboratory rodents, caloric restriction (CR) retards several age-dependent physiological and biochemical changes in skeletal muscle, including increased steady-state levels of oxidative damage to lipids, DNA, and proteins. We have previously used high-density oligonucleotide arrays to show that CR can prevent or delay most of the major age-related transcriptional alterations in the gastrocnemius muscle of C57BL/6 mice. Here we report the effects of aging and adult-onset CR on the gene expression profile of 7,070 genes in the vastus lateralis muscle from rhesus monkeys. Gene expression analysis of aged rhesus monkeys (mean age of 26 years) was compared with that of young animals (mean age of 8 years). Aging resulted in a selective up-regulation of transcripts involved in inflammation and oxidative stress, and a down-regulation of genes involved in mitochondrial electron transport and oxidative phosphorylation. Middle-aged monkeys (mean age of 20 years) subjected to CR since early adulthood (mean age of 11 years) were studied to determine the gene expression profile induced by CR. CR resulted in an up-regulation of cytoskeletal protein-encoding genes, and also a decrease in the expression of genes involved in mitochondrial bioenergetics. Surprisingly, we did not observe any evidence for an inhibitory effect of adult-onset CR on age-related changes in gene expression. These results indicate that the induction of an oxidative stress-induced transcriptional response may be a common feature of aging in skeletal muscle of rodents and primates, but the extent to which CR modifies these responses may be species-specific.


Molecular Cell | 2013

Calorie Restriction and SIRT3 Trigger Global Reprogramming of the Mitochondrial Protein Acetylome

Alexander S. Hebert; Kristin E. Dittenhafer-Reed; Wei Yu; Derek J. Bailey; Ebru Selin Selen; Melissa D. Boersma; Joshua J. Carson; Marco Tonelli; Allison J. Balloon; Alan Higbee; Michael S. Westphall; David J. Pagliarini; Tomas A. Prolla; Fariba M. Assadi-Porter; Sushmita Roy; John M. Denu; Joshua J. Coon

Calorie restriction (CR) extends life span in diverse species. Mitochondria play a key role in CR adaptation; however, the molecular details remain elusive. We developed and applied a quantitative mass spectrometry method to probe the liver mitochondrial acetyl-proteome during CR versus control diet in mice that were wild-type or lacked the protein deacetylase SIRT3. Quantification of 3,285 acetylation sites-2,193 from mitochondrial proteins-rendered a comprehensive atlas of the acetyl-proteome and enabled global site-specific, relative acetyl occupancy measurements between all four experimental conditions. Bioinformatic and biochemical analyses provided additional support for the effects of specific acetylation on mitochondrial protein function. Our results (1) reveal widespread reprogramming of mitochondrial protein acetylation in response to CR and SIRT3, (2) identify three biochemically distinct classes of acetylation sites, and (3) provide evidence that SIRT3 is a prominent regulator in CR adaptation by coordinately deacetylating proteins involved in diverse pathways of metabolism and mitochondrial maintenance.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Transcriptional profiles associated with aging and middle age-onset caloric restriction in mouse hearts

Cheol Koo Lee; David B. Allison; Jaap Brand; Richard Weindruch; Tomas A. Prolla

To provide a global analysis of gene expression in the aging heart, we monitored the expression of 9,977 genes simultaneously in 5- and 30-month-old male B6C3F1 mice by using high-density oligonucleotide microarrays and several statistical techniques. Aging was associated with transcriptional alterations consistent with a metabolic shift from fatty acid to carbohydrate metabolism, increased expression of extracellular matrix genes, and reduced protein synthesis. Caloric restriction (CR) started at 14 months of age resulted in a 19% global inhibition of age-related changes in gene expression. Interestingly, CR also resulted in alterations in gene expression consistent with preserved fatty acid metabolism, reduced endogenous DNA damage, decreased innate immune activity, apoptosis modulation, and a marked cytoskeletal reorganization. These observations provide evidence that aging of the heart is associated with specific transcriptional alterations, and that CR initiated in middle age may retard heart aging by inducing a profound transcriptional reprogramming.

Collaboration


Dive into the Tomas A. Prolla's collaboration.

Top Co-Authors

Avatar

Richard Weindruch

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Gregory C. Kujoth

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jamie L. Barger

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David B. Allison

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge