Tomás C. Moyano
Pontifical Catholic University of Chile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tomás C. Moyano.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Elena A. Vidal; Tomás C. Moyano; Eleodoro Riveras; Orlando Contreras-López; Rodrigo A. Gutiérrez
Auxin is a key phytohormone regulating central processes in plants. Although the mechanism by which auxin triggers changes in gene expression is well understood, little is known about the specific role of the individual members of the TIR1/AFB auxin receptors, Aux/IAA repressors, and ARF transcription factors and/or molecular pathways acting downstream leading to plant responses to the environment. We previously reported a role for AFB3 in coordinating primary and lateral root growth to nitrate availability. In this work, we used an integrated genomics, bioinformatics, and molecular genetics approach to dissect regulatory networks acting downstream of AFB3 that are activated by nitrate in roots. We found that the NAC4 transcription factor is a key regulatory element controlling a nitrate-responsive network, and that nac4 mutants have altered lateral root growth but normal primary root growth in response to nitrate. This finding suggests that AFB3 is able to activate two independent pathways to control root system architecture. Our systems approach has unraveled key components of the AFB3 regulatory network leading to changes in lateral root growth in response to nitrate.
Frontiers in Plant Science | 2014
Javier Canales; Tomás C. Moyano; Eva Villarroel; Rodrigo A. Gutiérrez
Nitrogen (N) is an essential macronutrient for plant growth and development. Plants adapt to changes in N availability partly by changes in global gene expression. We integrated publicly available root microarray data under contrasting nitrate conditions to identify new genes and functions important for adaptive nitrate responses in Arabidopsis thaliana roots. Overall, more than 2000 genes exhibited changes in expression in response to nitrate treatments in Arabidopsis thaliana root organs. Global regulation of gene expression by nitrate depends largely on the experimental context. However, despite significant differences from experiment to experiment in the identity of regulated genes, there is a robust nitrate response of specific biological functions. Integrative gene network analysis uncovered relationships between nitrate-responsive genes and 11 highly co-expressed gene clusters (modules). Four of these gene network modules have robust nitrate responsive functions such as transport, signaling, and metabolism. Network analysis hypothesized G2-like transcription factors are key regulatory factors controlling transport and signaling functions. Our meta-analysis highlights the role of biological processes not studied before in the context of the nitrate response such as root hair development and provides testable hypothesis to advance our understanding of nitrate responses in plants.
BMC Genomics | 2013
Elena A. Vidal; Tomás C. Moyano; Gabriel Krouk; Manpreet S. Katari; Milos Tanurdzic; W. Richard McCombie; Gloria M. Coruzzi; Rodrigo A. Gutiérrez
BackgroundNitrate and other nitrogen metabolites can act as signals that regulate global gene expression in plants. Adaptive changes in plant morphology and physiology triggered by changes in nitrate availability are partly explained by these changes in gene expression. Despite several genome-wide efforts to identify nitrate-regulated genes, no comprehensive study of the Arabidopsis root transcriptome under contrasting nitrate conditions has been carried out.ResultsIn this work, we employed the Illumina high throughput sequencing technology to perform an integrated analysis of the poly-A + enriched and the small RNA fractions of the Arabidopsis thaliana root transcriptome in response to nitrate treatments. Our sequencing strategy identified new nitrate-regulated genes including 40 genes not represented in the ATH1 Affymetrix GeneChip, a novel nitrate-responsive antisense transcript and a new nitrate responsive miRNA/TARGET module consisting of a novel microRNA, miR5640 and its target, AtPPC3.ConclusionsSequencing of small RNAs and mRNAs uncovered new genes, and enabled us to develop new hypotheses for nitrate regulation and coordination of carbon and nitrogen metabolism.
Current Opinion in Plant Biology | 2015
Elena A. Vidal; José Miguel Álvarez; Tomás C. Moyano; Rodrigo A. Gutiérrez
Nitrogen is an essential macronutrient for plants and its availability is a key determinant of plant growth and development and crop yield. Besides their nutritional role, N nutrients and metabolites are signals that activate signaling pathways that modulate many plant processes. Because the most abundant inorganic N source for plants in agronomic soils is nitrate, much of the work to understand plant N-signaling has focused on this nutrient. Over the last years, several studies defined a comprehensive catalog of nitrate-responsive genes, involved in nitrate transport, metabolism and a variety of other processes. Despite significant progress in recent years, primarily using Arabidopsis thaliana as a model system, the molecular mechanisms by which nitrate elicits changes in transcript abundance are still not fully understood. Here we highlight recent advancements in identifying key transcription factors and transcriptional mechanisms that orchestrate the gene expression response to changes in nitrate availability in A. thaliana.
Journal of Experimental Botany | 2014
Elena A. Vidal; Tomás C. Moyano; Javier Canales; Rodrigo A. Gutiérrez
Nitrogen (N) is an essential macronutrient and a key structural component of macromolecules in plants. N nutrients and metabolites can act as signals that impact on many aspects of plant biology. The plant life cycle involves a series of developmental phase transitions that must be tightly coordinated to external and internal cues in order to ensure plant survival and reproduction. N availability is one of the factors controlling phase changes. In this review, we integrate and summarize the known effects of N over different developmental stages in plants. Substantial advances have been made in our understanding of signalling and N-responsive gene regulatory networks. We focus on the molecular mechanisms underlying N regulation of developmental transitions and the role of putative new regulators that might link N availability to pathways controlling Arabidopsis growth and development from seed germination through the plant reproductive transition.
Frontiers in Plant Science | 2015
Andrea Vega; Paulo Canessa; Gustavo Hoppe; Ignacio Retamal; Tomás C. Moyano; Javier Canales; Rodrigo A. Gutiérrez; Joselyn Rubilar
Nitrogen (N) is one of the main limiting nutrients for plant growth and crop yield. It is well documented that changes in nitrate availability, the main N source found in agricultural soils, influences a myriad of developmental programs and processes including the plant defense response. Indeed, many agronomical reports indicate that the plant N nutritional status influences their ability to respond effectively when challenged by different pathogens. However, the molecular mechanisms involved in N-modulation of plant susceptibility to pathogens are poorly characterized. In this work, we show that Solanum lycopersicum defense response to the necrotrophic fungus Botrytis cinerea is affected by plant N availability, with higher susceptibility in nitrate-limiting conditions. Global gene expression responses of tomato against B. cinerea under contrasting nitrate conditions reveals that plant primary metabolism is affected by the fungal infection regardless of N regimes. This result suggests that differential susceptibility to pathogen attack under contrasting N conditions is not only explained by a metabolic alteration. We used a systems biology approach to identify the transcriptional regulatory network implicated in plant response to the fungus infection under contrasting nitrate conditions. Interestingly, hub genes in this network are known key transcription factors involved in ethylene and jasmonic acid signaling. This result positions these hormones as key integrators of nitrate and defense against B. cinerea in tomato plants. Our results provide insights into potential crosstalk mechanisms between necrotrophic defense response and N status in plants.
Journal of Experimental Botany | 2016
Carmen M. Pérez-Delgado; Tomás C. Moyano; Margarita García-Calderón; Javier Canales; Rodrigo A. Gutiérrez; Antonio J. Márquez; Marco Betti
Highlight A clear interconnection between photorespiration and primary nitrogen assimilation is established in Lotus japonicus, and key transcription factors connected to both routes are identified using transcriptomics and gene co-expression networks.
Methods of Molecular Biology | 2015
Tomás C. Moyano; Elena A. Vidal; Orlando Contreras-López; Rodrigo A. Gutiérrez
Technological advances in the last decade have enabled biologists to produce increasing amounts of information for the transcriptome, proteome, interactome, and other -omics data sets in many model organisms. A major challenge is integration and biological interpretation of these massive data sets in order to generate testable hypotheses about gene regulatory networks or molecular mechanisms that govern system behaviors. Constructing gene networks requires bioinformatics skills to adequately manage, integrate, analyze and productively use the data to generate biological insights. In this chapter, we provide detailed methods for users without prior knowledge of bioinformatics to construct gene networks and derive hypotheses that can be experimentally verified. Step-by-step instructions for acquiring, integrating, analyzing, and visualizing genome-wide data are provided for two widely used open source platforms, R and Cytoscape platforms. The examples provided are based on Arabidopsis data, but the protocols presented should be readily applicable to any organism for which similar data can be obtained.
Archive | 2018
Orlando Contreras-López; Tomás C. Moyano; Daniela Soto; Rodrigo A. Gutiérrez
The rapid increase in the availability of transcriptomics data generated by RNA sequencing represents both a challenge and an opportunity for biologists without bioinformatics training. The challenge is handling, integrating, and interpreting these data sets. The opportunity is to use this information to generate testable hypothesis to understand molecular mechanisms controlling gene expression and biological processes (Fig. 1). A successful strategy to generate tractable hypotheses from transcriptomics data has been to build undirected network graphs based on patterns of gene co-expression. Many examples of new hypothesis derived from network analyses can be found in the literature, spanning different organisms including plants and specific fields such as root developmental biology.In order to make the process of constructing a gene co-expression network more accessible to biologists, here we provide step-by-step instructions using published RNA-seq experimental data obtained from a public database. Similar strategies have been used in previous studies to advance root developmental biology. This guide includes basic instructions for the operation of widely used open source platforms such as Bio-Linux, R, and Cytoscape. Even though the data we used in this example was obtained from Arabidopsis thaliana, the workflow developed in this guide can be easily adapted to work with RNA-seq data from any organism.
bioRxiv | 2018
Bernardo Pollak; Ariel Cerda; Mihails Delmans; Simon Alamos; Tomás C. Moyano; Anthony West; Rodrigo A. Gutiérrez; Nicola J. Patron; Fernán Federici; Jim Haseloff
High efficiency methods for DNA assembly are based on sequence overlap between fragments or Type IIS restriction endonuclease cleavage and ligation. These have enabled routine assembly of synthetic DNAs of increased size and complexity. However, these techniques require customisation, elaborate vector sets and serial manipulations for the different stages of assembly. We present Loop assembly, based on a recursive approach to DNA fabrication. Alternate use of two Type IIS restriction endonucleases and corresponding vector sets allows efficient and parallel assembly of large DNA circuits. Plasmids containing standard Level 0 parts can be assembled into circuits containing 1, 4, 16 or more genes by looping between the two vector sets. The vectors also contain modular sites for hybrid assembly using sequence overlap methods. Loop assembly provides a simple generalised solution for DNA construction with standardised parts. The cloning system is provided under an OpenMTA license for unrestricted sharing and open access.