Tomáš Hron
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tomáš Hron.
Genome Biology | 2015
Tomáš Hron; Petr Pajer; Jan Pačes; Petr Bartůněk; Daniel Elleder
AbstractWe report that a subset of avian genes is characterized by very high GC content and long G/C stretches. These sequence characteristics correlate with the frequent absence of these genes from genomic databases. We provide several examples where genes in this subset are mistakenly reported as missing in birds. www.dx.doi.org/10.1186/s13059-015-0725-y
Retrovirology | 2014
Tomáš Hron; Helena Fábryová; Jan Pačes; Daniel Elleder
BackgroundA significant fraction of mammalian genomes is composed of endogenous retroviral (ERV) sequences that are formed by germline infiltration of various retroviruses. In contrast to other retroviral genera, lentiviruses only rarely form ERV copies. We performed a computational search aimed at identification of novel endogenous lentiviruses in vertebrate genomes.FindingsUsing the in silico strategy, we have screened 104 publicly available vertebrate genomes for the presence of endogenous lentivirus sequences. In addition to the previously described cases, the search revealed the presence of endogenous lentivirus in the genome of Malayan colugo (Galeopterus variegatus). At least three complete copies of this virus, denoted ELVgv, were detected in the colugo genome, and approximately one hundred solo LTR sequences. The assembled consensus sequence of ELVgv had typical lentivirus genome organization including three predicted accessory genes. Phylogenetic analysis placed this virus as a distinct subgroup within the lentivirus genus. The time of insertion into the dermopteran lineage was estimated to be more than thirteen million years ago.ConclusionsWe report the discovery of the first endogenous lentivirus in the mammalian order Dermoptera, which is a taxon close to the Primates. Lentiviruses have infiltrated the mammalian germline several times across millions of years. The colugo virus described here represents possibly the oldest documented endogenization event and its discovery can lead to new insights into lentivirus evolution. This is also the first report of an endogenous lentivirus in an Asian mammal, indicating a long-term presence of this retrovirus family in Asian continent.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Helena Farkašová; Tomáš Hron; Jan Pačes; Pavel Hulva; Petr Benda; Robert J. Gifford; Daniel Elleder
Significance Retroviruses copy their RNA genome into complementary DNA, which is then inserted into the host chromosomal DNA as an obligatory part of their life cycle. Such integrated viral sequences, called proviruses, are passed to the infected cell progeny on cellular division. If germline cells are targeted, the proviruses become vertically inherited as other host genes and are called endogenous retroviruses. Deltaretroviruses, which include important human and veterinary pathogens (HTLV-1 and BLV), are the last retroviral genus for which endogenous forms were not known. We have identified a case of endogenous Deltaretrovirus, which entered the genome of long-fingered bat ancestors more than 20 million years ago. This finding opens the way for elucidating the deep evolutionary history of deltaretroviruses. Retroviruses can create endogenous forms on infiltration into the germline cells of their hosts. These forms are then vertically transmitted and can be considered as genetic fossils of ancient viruses. All retrovirus genera, with the exception of deltaretroviruses, have had their representation identified in the host genome as a virus fossil record. Here we describe an endogenous Deltaretrovirus, identified in the germline of long-fingered bats (Miniopteridae). A single, heavily deleted copy of this retrovirus has been found in the genome of miniopterid species, but not in the genomes of the phylogenetically closest bat families, Vespertilionidae and Cistugonidae. Therefore, the endogenization occurred in a time interval between 20 and 45 million years ago. This discovery closes the last major gap in the retroviral fossil record and provides important insights into the history of deltaretroviruses in mammals.
Viruses | 2017
Petr Pajer; Jiri Dresler; Hana Kabíčková; Libor Pisa; Pavel Aganov; Karel Fucik; Daniel Elleder; Tomáš Hron; Vitezslav Kuzelka; Petr Velemínsky; Jana Klimentova; Alena Fucikova; Jaroslav Pejchal; Rita Hrabakova; Vladimir Benes; Tobias Rausch; Pavel Dundr; Alexander Pilin; Radomír Čabala; Martin Hubalek; Jan Stríbrny; Markus Antwerpen; Hermann Meyer
Although smallpox has been known for centuries, the oldest available variola virus strains were isolated in the early 1940s. At that time, large regions of the world were already smallpox-free. Therefore, genetic information of these strains can represent only the very last fraction of a long evolutionary process. Based on the genomes of 48 strains, two clades are differentiated: Clade 1 includes variants of variola major, and clade 2 includes West African and variola minor (Alastrim) strains. Recently, the genome of an almost 400-year-old Lithuanian mummy was determined, which fell basal to all currently sequenced strains of variola virus on phylogenetic trees. Here, we determined two complete variola virus genomes from human tissues kept in a museum in Prague dating back 60 and 160 years, respectively. Moreover, mass spectrometry-based proteomic, chemical, and microscopic examinations were performed. The 60-year-old specimen was most likely an importation from India, a country with endemic smallpox at that time. The genome of the 160-year-old specimen is related to clade 2 West African and variola minor strains. This sequence likely represents a new endemic European variant of variola virus circulating in the midst of the 19th century in Europe.
Molecular Carcinogenesis | 2017
Martina Benešová; Kateřina Trejbalová; Dana Kučerová; Zdenka Vernerová; Tomáš Hron; Arpád Szabó; Rachel Amouroux; Petr Klézl; Petra Hajkova; Jiří Hejnar
Germ cell tumors and particularly seminomas reflect the epigenomic features of their parental primordial germ cells (PGCs), including genomic DNA hypomethylation and expression of pluripotent cell markers. Because the DNA hypomethylation might be a result of TET dioxygenase activity, we examined expression of TET1‐3 enzymes and the level of their product, 5‐hydroxymethylcytosine (5hmC), in a panel of histologically characterized seminomas and non‐seminomatous germ cell tumors. Expression of TET dioxygenase mRNAs was quantified by real‐time PCR. TET1 expression and the level of 5hmC were examined immunohistochemically. Quantitative assessment of 5‐methylcytosine (5mC) and 5hmC levels was done by the liquid chromatography‐mass spectroscopy technique. We found highly increased expression of TET1 dioxygenase in most seminomas and strong TET1 staining in seminoma cells. Isocitrate dehydrogenase 1 and 2 mutations were not detected, suggesting the enzymatic activity of TET1. The levels of 5mC and 5hmC in seminomas were found decreased in comparison to non‐seminomatous germ cell tumors and healthy testicular tissue. We propose that TET1 expression should be studied as a potential marker of seminomas and mixed germ cell tumors and we suggest that elevated expression of TET dioxygenase enzymes is associated with the maintenance of low DNA methylation levels in seminomas. This “anti‐methylator” phenotype of seminomas is in contrast to the CpG island methylator phenotype (CIMP) observed in a fraction of tumors of various types.
Virology | 2015
Helena Fábryová; Tomáš Hron; Hana Kabíčková; Mary Poss; Daniel Elleder
Endogenous retroviruses (ERVs) were acquired during evolution of their host organisms after infection and mendelian inheritance in the germline by their exogenous counterparts. The ERVs can spread in the host genome and in some cases they affect the host phenotype. The cervid endogenous gammaretrovirus (CrERV) is one of only a few well-defined examples of evolutionarily recent invasion of mammalian genome by retroviruses. Thousands of insertionally polymorphic CrERV integration sites have been detected in wild ranging mule deer (Odocoileus hemionus) host populations. Here, we describe for the first time induction of replication competent CrERV by cocultivation of deer and human cells. We characterize the physical properties and tropism of the induced virus. The genomic sequence of the induced virus is phylogenetically related to the evolutionarily young endogenous CrERVs described so far. We also describe the level of replication block of CrERV on deer cells and its capacity to establish superinfection interference.
Retrovirology | 2017
Martina Benešová; Kateřina Trejbalová; Denisa Kovářová; Zdenka Vernerová; Tomáš Hron; Dana Kučerová; Jiří Hejnar
AbstractBackground Syncytin-1 and 2, human fusogenic glycoproteins encoded by the env genes of the endogenous retroviral loci ERVWE1 and ERVFRDE1, respectively, contribute to the differentiation of multinucleated syncytiotrophoblast in chorionic villi. In non-trophoblastic cells, however, the expression of syncytins has to be suppressed to avoid potential pathogenic effects. Previously, we have shown that the transcriptional suppression of ERVWE1 promoter is controlled epigenetically by DNA methylation and chromatin modifications. In this study, we describe the aberrant expression of syncytin-1 in biopsies of testicular germ cell tumors.ResultsWe found efficient expression and splicing of syncytin-1 in seminomas and mixed germ cell tumors with seminoma component. Although another fusogenic gene, syncytin-2 was also derepressed in seminomas, its expression was significantly lower than that of syncytin-1. Neither the transcription factor GCM1 nor the increased copy number of ERVWE1 were sufficient for this aberrant expression of syncytin-1 in seminomas. In accordance with our recent finding of the highly increased expression of TET1 dioxygenase in most seminomas, the ERVWE1 promoter was significantly hypomethylated in comparison with the matched controls. In contrast, 5-hydroxymethylcytosine levels were not detectable at the ERVWE1 promoter. We further describe that another endogenous retroviral element adjacent to ERVWE1 remains transcriptionally suppressed and two additional HERV-W family members are only slightly upregulated in seminomas.ConclusionsWe conclude that DNA demethylation of the ERVWE1 promoter in seminomas is a prerequisite for syncytin-1 derepression. We propose the spliced syncytin-1 expression as a marker of seminoma and suggest that aberrant expression of endogenous retroviruses might be a correlate of the hypomethylated genome of seminomas.
Molecular Biology and Evolution | 2016
Tomáš Hron; Helena Farkašová; Abinash Padhi; Jan Pačes; Daniel Elleder
Endogenous retroviruses are genomic elements formed by germline infiltration by originally exogenous viruses. These molecular fossils provide valuable information about the evolution of the retroviral family. Lentiviruses are an extensively studied genus of retroviruses infecting a broad range of mammals. Despite a wealth of information on their modern evolution, little is known about their origins. This is partially due to the scarcity of their endogenous forms. Recently, an endogenous lentivirus, ELVgv, was discovered in the genome of the Malayan colugo (order Dermoptera). This represents the oldest lentiviral evidence available and promises to lead to further insights into the history of this genus. In this study, we analyzed ELVgv integrations at several genomic locations in four distinct colugo specimens covering all the extant dermopteran species. We confirmed ELVgv integrations in all the specimens examined, which implies that the virus originated before the dermopteran diversification. Using a locus-specific dermopteran substitution rate, we estimated that the proviral integrations occurred 21-40 Ma. Using phylogenetic analysis, we estimated that ELVgv invaded an ancestor of todays Dermoptera in an even more distant past. We also provide evidence of selective pressure on the TRIM5 antiviral restriction factor, something usually taken as indirect evidence of past retroviral infections. Interestingly, we show that TRIM5 was under strong positive selection pressure only in the common dermopteran ancestor, where the ELVgv endogenization occurred. Further experiments are required to determine whether ELVgv participated in the TRIM5 selection.
Computation | 2014
Le Bao; Daniel Elleder; Raunaq Malhotra; Michael DeGiorgio; Theodora Maravegias; Lindsay M. Horvath; Laura Carrel; Colin M. Gillin; Tomáš Hron; Helena Fábryová; David R. Hunter; Mary Poss
Endogenous retroviruses (ERVs) are a class of transposable elements found in all vertebrate genomes that contribute substantially to genomic functional and structural diversity. A host species acquires an ERV when an exogenous retrovirus infects a germ cell of an individual and becomes part of the genome inherited by viable progeny. ERVs that colonized ancestral lineages are fixed in contemporary species. However, in some extant species, ERV colonization is ongoing, which results in variation in ERV frequency in the population. To study the consequences of ERV colonization of a host genome, methods are needed to assign each ERV to a location in a species’ genome and determine which individuals have acquired each ERV by descent. Because well annotated reference genomes are not widely available for all species, de novo clustering approaches provide an alternative to reference mapping that are insensitive to differences between query and reference and that are amenable to mobile element studies in both model and non-model organisms. However, there is substantial uncertainty in both identifying ERV genomic position and assigning each unique ERV integration site to individuals in a population. We present an analysis suitable for detecting ERV integration sites in species without the need for a reference genome. Our approach is based on improved de novo clustering methods and statistical models that take the uncertainty of assignment into account and yield a probability matrix of shared ERV integration sites among individuals. We demonstrate that polymorphic integrations of a recently identified endogenous retrovirus in deer reflect contemporary relationships among individuals and populations.
Frontiers in Immunology | 2018
Franziska Rohde; Benjamin Schusser; Tomáš Hron; Helena Farkašová; Jiří Plachý; Sonja Härtle; Jiří Hejnar; Daniel Elleder; Bernd Kaspers
Tumor necrosis factor-α (TNF-α) is a pleiotropic cytokine playing critical roles in host defense and acute and chronic inflammation. It has been described in fish, amphibians, and mammals but was considered to be absent in the avian genomes. Here, we report on the identification and functional characterization of the avian ortholog. The chicken TNF-α (chTNF-α) is encoded by a highly GC-rich gene, whose product shares with its mammalian counterpart 45% homology in the extracellular part displaying the characteristic TNF homology domain. Orthologs of chTNF-α were identified in the genomes of 12 additional avian species including Palaeognathae and Neognathae, and the synteny of the closely adjacent loci with mammalian TNF-α orthologs was demonstrated in the crow (Corvus cornix) genome. In addition to chTNF-α, we obtained full sequences for homologs of TNF-α receptors 1 and 2 (TNFR1, TNFR2). chTNF-α mRNA is strongly induced by lipopolysaccharide (LPS) stimulation of monocyte derived, splenic and bone marrow macrophages, and significantly upregulated in splenic tissue in response to i.v. LPS treatment. Activation of T-lymphocytes by TCR crosslinking induces chTNF-α expression in CD4+ but not in CD8+ cells. To gain insights into its biological activity, we generated recombinant chTNF-α in eukaryotic and prokaryotic expression systems. Both, the full-length cytokine and the extracellular domain rapidly induced an NFκB-luciferase reporter in stably transfected CEC-32 reporter cells. Collectively, these data provide strong evidence for the existence of a fully functional TNF-α/TNF-α receptor system in birds thus filling a gap in our understanding of the evolution of cytokine systems.