Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomas Koudelka is active.

Publication


Featured researches published by Tomas Koudelka.


Journal of Biological Chemistry | 2008

Dissociation from the oligomeric state is the rate-limiting step in fibril formation by kappa-casein

Heath Ecroyd; Tomas Koudelka; David C. Thorn; Danielle M. Williams; Glyn L. Devlin; Peter Hoffmann; John A. Carver

Amyloid fibrils are aggregated and precipitated forms of protein in which the protein exists in highly ordered, long, unbranching threadlike formations that are stable and resistant to degradation by proteases. Fibril formation is an ordered process that typically involves the unfolding of a protein to partially folded states that subsequently interact and aggregate through a nucleation-dependent mechanism. Here we report on studies investigating the molecular basis of the inherent propensity of the milk protein, κ-casein, to form amyloid fibrils. Using reduced and carboxymethylated κ-casein (RCMκ-CN), we show that fibril formation is accompanied by a characteristic increase in thioflavin T fluorescence intensity, solution turbidity, and β-sheet content of the protein. However, the lag phase of RCMκ-CN fibril formation is independent of protein concentration, and the rate of fibril formation does not increase upon the addition of seeds (preformed fibrils). Therefore, its mechanism of fibril formation differs from the archetypal nucleation-dependent aggregation mechanism. By digestion with trypsin or proteinase K and identification by mass spectrometry, we have determined that the region from Tyr25 to Lys86 is incorporated into the core of the fibrils. We suggest that this region, which is predicted to be aggregation-prone, accounts for the amyloidogenic nature of κ-casein. Based on these data, we propose that fibril formation by RCMκ-CN occurs through a novel mechanism whereby the rate-limiting step is the dissociation of an amyloidogenic precursor from an oligomeric state rather than the formation of stable nuclei, as has been described for most other fibril-forming systems.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Metalloproteases meprin α and meprin β are C- and N-procollagen proteinases important for collagen assembly and tensile strength

Claudia Broder; Philipp Arnold; Sandrine Vadon-Le Goff; Moritz A. Konerding; Kerstin Bahr; Stefan Müller; Christopher M. Overall; Judith S. Bond; Tomas Koudelka; Andreas Tholey; David J. S. Hulmes; Catherine Moali; Christoph Becker-Pauly

Type I fibrillar collagen is the most abundant protein in the human body, crucial for the formation and strength of bones, skin, and tendon. Proteolytic enzymes are essential for initiation of the assembly of collagen fibrils by cleaving off the propeptides. We report that Mep1a−/− and Mep1b−/− mice revealed lower amounts of mature collagen I compared with WT mice and exhibited significantly reduced collagen deposition in skin, along with markedly decreased tissue tensile strength. While exploring the mechanism of this phenotype, we found that cleavage of full-length human procollagen I heterotrimers by either meprin α or meprin β led to the generation of mature collagen molecules that spontaneously assembled into collagen fibrils. Thus, meprin α and meprin β are unique in their ability to process and release both C- and N-propeptides from type I procollagen in vitro and in vivo and contribute to the integrity of connective tissue in skin, with consequent implications for inherited connective tissue disorders.


Journal of Proteomics | 2012

Internal calibrants allow high accuracy peptide matching between MALDI imaging MS and LC-MS/MS ☆

Johan O. R. Gustafsson; James S. Eddes; Stephan Meding; Tomas Koudelka; Martin K. Oehler; Peter Hoffmann

One of the important challenges for MALDI imaging mass spectrometry (MALDI-IMS) is the unambiguous identification of measured analytes. One way to do this is to match tryptic peptide MALDI-IMS m/z values with LC-MS/MS identified m/z values. Matching using current MALDI-TOF/TOF MS instruments is difficult due to the variability of in situ time-of-flight (TOF) m/z measurements. This variability is currently addressed using external calibration, which limits achievable mass accuracy for MALDI-IMS and makes it difficult to match these data to downstream LC-MS/MS results. To overcome this challenge, the work presented here details a method for internally calibrating data sets generated from tryptic peptide MALDI-IMS on formalin-fixed paraffin-embedded sections of ovarian cancer. By calibrating all spectra to internal peak features the m/z error for matches made between MALDI-IMS m/z values and LC-MS/MS identified peptide m/z values was significantly reduced. This improvement was confirmed by follow up matching of LC-MS/MS spectra to in situ MS/MS spectra from the same m/z peak features. The sum of the data presented here indicates that internal calibrants should be a standard component of tryptic peptide MALDI-IMS experiments.


Journal of Agricultural and Food Chemistry | 2009

Dephosphorylation of αs- and β-Caseins and Its Effect on Chaperone Activity: A Structural and Functional Investigation

Tomas Koudelka; Peter Hoffmann; John A. Carver

Milk casein proteins can act as molecular chaperones: under conditions of stress, such as elevated temperature, molecular chaperones stabilize proteins from unfolding, aggregating, and precipitating. In this study, alpha(s)- and beta-caseins were dephosphorylated using alkaline phosphatase. A structural and functional investigation was undertaken to determine the effect of dephosphorylation on the chaperone activity of alpha(s)- and beta-caseins against two types of protein misfolding, i.e., amorphous aggregation and amyloid fibril assembly. The dephosphorylation of alpha(s)- and beta-caseins resulted in a decrease in the chaperone efficiency against both heat- and reduction-induced amorphously aggregating target proteins. In contrast, dephosphorylation had no effect on the chaperone activity of alpha(s)- and beta-caseins against the amyloid-forming target protein kappa-casein. Circular dichroism and fluorescence spectroscopic data indicated that the loss of negative charge associated with dephosphorylation led to an increase in ordered structure of alpha(s)- and beta-caseins. It is concluded that the flexible, dynamic, and relatively unstructured and amphiphatic nature of alpha(s)- and beta-caseins is important in their chaperone action.


Journal of Biological Chemistry | 2014

Polo-like Kinase 2, a Novel ADAM17 Signaling Component, Regulates Tumor Necrosis Factor α Ectodomain Shedding

Jeanette Schwarz; Stefanie Schmidt; Olga Will; Tomas Koudelka; Kaja Köhler; Melanie Boss; Björn Rabe; Andreas Tholey; Jürgen Scheller; Dirk Schmidt-Arras; Michael Schwake; Stefan Rose-John; Athena Chalaris

Background: The metalloprotease ADAM17 emerged as the main sheddase of several cytokines and cytokine receptors. Results: The acidophilic kinase PLK2 interacts with and phosphorylates ADAM17 in mammalian cells. Conclusion: PLK2 represents a novel cellular interaction partner of ADAM17 modulating its activity. Significance: Regulation of ADAM17 activity is essential for inflammatory responses. ADAM17 (a disintegrin and metalloprotease 17) controls pro- and anti-inflammatory signaling events by promoting ectodomain shedding of cytokine precursors and cytokine receptors. Despite the well documented substrate repertoire of ADAM17, little is known about regulatory mechanisms, leading to substrate recognition and catalytic activation. Here we report a direct interaction of the acidophilic kinase Polo-like kinase 2 (PLK2, also known as SNK) with the cytoplasmic portion of ADAM17 through the C-terminal noncatalytic region of PLK2 containing the Polo box domains. PLK2 activity leads to ADAM17 phosphorylation at serine 794, which represents a novel phosphorylation site. Activation of ADAM17 by PLK2 results in the release of pro-TNFα and TNF receptors from the cell surface, and pharmacological inhibition of PLK2 leads to down-regulation of LPS-induced ADAM17-mediated shedding on primary macrophages and dendritic cells. Importantly, PLK2 expression is up-regulated during inflammatory conditions increasing ADAM17-mediated proteolytic events. Our findings suggest a new role for PLK2 in the regulation of inflammatory diseases by modulating ADAM17 activity.


Journal of Biomolecular Structure & Dynamics | 2014

Characterization of the covalent binding of allyl isothiocyanate to β-lactoglobulin by fluorescence quenching, equilibrium measurement, and mass spectrometry

Julia K. Keppler; Tomas Koudelka; Kalpana Palani; Mayra C. Stuhldreier; F. Temps; Andreas Tholey; Karin Schwarz

Reversible binding of small compounds through hydrophobic interactions or hydrogen bonding to food proteins (e.g. milk proteins) is a thoroughly researched topic. In contrast, covalent interactions are not well characterized. Here, we report a rare form of positive-cooperativity-linear binding of allyl isothiocyanate with β-lactoglobulin, resulting in the cleavage of a disulfide bond of the protein. We compared three methods (i.e. fluorescence quenching, equilibrium dialysis, and headspace–water equilibrium) to characterize the binding kinetics and investigated the molecular binding by mass spectrometry. The methodologies used were found to be comparable and reproducible in the presence of high and low ligand concentrations for fluorescence quenching and equilibrium-based methods respectively.


PLOS Biology | 2017

PROTEOLYTIC ORIGIN OF THE SOLUBLE HUMAN IL-6R IN VIVO AND A DECISIVE ROLE OF N-GLYCOSYLATION

Steffen Riethmueller; Prasath Somasundaram; Johanna C. Ehlers; Chien-Wen Hung; Charlotte M. Flynn; Juliane Lokau; Maria Agthe; Stefan Düsterhöft; Yijue Zhu; Joachim Grötzinger; Inken Lorenzen; Tomas Koudelka; Kosuke Yamamoto; Ute Pickhinke; Rielana Wichert; Christoph Becker-Pauly; Marisa Rädisch; Alexander Albrecht; Markus Hessefort; Dominik Stahnke; Carlo Unverzagt; Stefan Rose-John; Andreas Tholey; Christoph Garbers

Signaling of the cytokine interleukin-6 (IL-6) via its soluble IL-6 receptor (sIL-6R) is responsible for the proinflammatory properties of IL-6 and constitutes an attractive therapeutic target, but how the sIL-6R is generated in vivo remains largely unclear. Here, we use liquid chromatography–mass spectrometry to identify an sIL-6R form in human serum that originates from proteolytic cleavage, map its cleavage site between Pro-355 and Val-356, and determine the occupancy of all O- and N-glycosylation sites of the human sIL-6R. The metalloprotease a disintegrin and metalloproteinase 17 (ADAM17) uses this cleavage site in vitro, and mutation of Val-356 is sufficient to completely abrogate IL-6R proteolysis. N- and O-glycosylation were dispensable for signaling of the IL-6R, but proteolysis was orchestrated by an N- and O-glycosylated sequon near the cleavage site and an N-glycan exosite in domain D1. Proteolysis of an IL-6R completely devoid of glycans is significantly impaired. Thus, glycosylation is an important regulator for sIL-6R generation.


Journal of Agricultural and Food Chemistry | 2012

Methionine oxidation enhances κ-casein amyloid fibril formation.

Tomas Koudelka; Francis C. Dehle; Ian F. Musgrave; Peter Hoffmann; John A. Carver

The effects of protein oxidation, for example of methionine residues, are linked to many diseases, including those of protein misfolding, such as Alzheimers disease. Protein misfolding diseases are characterized by the accumulation of insoluble proteinaceous aggregates comprised mainly of amyloid fibrils. Amyloid-containing bodies known as corpora amylacea (CA) are also found in mammary secretory tissue, where their presence slows milk flow. The major milk protein κ-casein readily forms amyloid fibrils under physiological conditions. Milk exists in an extracellular oxidizing environment. Accordingly, the two methionine residues in κ-casein (Met(95) and Met(106)) were selectively oxidized and the effects on the fibril-forming propensity, cellular toxicity, chaperone ability, and structure of κ-casein were determined. Oxidation resulted in an increase in the rate of fibril formation and a greater level of cellular toxicity. β-Casein, which inhibits κ-casein fibril formation in vitro, was less effective at suppressing fibril formation of oxidized κ-casein. The ability of κ-casein to prevent the amorphous aggregation of target proteins was slightly enhanced upon methionine oxidation, which may arise from the proteins greater exposed surface hydrophobicity. No significant changes to κ-caseins intrinsically disordered structure occurred upon oxidation. The enhanced rate of fibril formation of oxidized κ-casein, coupled with the reduced chaperone ability of β-casein to prevent this aggregation, may affect casein-casein interaction within the casein micelle and thereby promote κ-casein aggregation and contribute to the formation of CA.


Biochemical Journal | 2015

Metalloprotease meprin β is activated by transmembrane serine protease matriptase-2 at the cell surface thereby enhancing APP shedding.

Felix Jäckle; Frederike Schmidt; Rielana Wichert; Philipp Arnold; Johannes Prox; Martin Mangold; Anke Ohler; Claus U. Pietrzik; Tomas Koudelka; Andreas Tholey; Michael Gütschow; Marit Stirnberg; Christoph Becker-Pauly

Increased expression of metalloprotease meprin β is associated with fibrotic syndromes and Alzheimers disease (AD). Hence, regulation of meprin activity might be a suitable strategy for the treatment of these conditions. Meprin β is a type 1 transmembrane protein, but can be released from the cell surface by ectodomain shedding. The protease is expressed as an inactive zymogen and requires proteolytic maturation by tryptic serine proteases. In the present study, we demonstrate, for the first time, the differences in the activation of soluble and membrane bound meprin β and suggest transmembrane serine protease 6 [TMPRSS6 or matriptase-2 (MT2)] as a new potent activator, cleaving off the propeptide of meprin β between Arg(61) and Asn(62) as determined by MS. We show that MT2, but not TMPRSS4 or pancreatic trypsin, is capable of activating full-length meprin β at the cell surface, analysed by specific fluorogenic peptide cleavage assay, Western blotting and confocal laser scanning microscopy (CLSM). Maturation of full-length meprin β is required for its activity as a cell surface sheddase, releasing the ectodomains of transmembrane proteins, as previously shown for the amyloid precursor protein (APP).


Journal of Proteome Research | 2016

C-Terminal Charge-Reversal Derivatization and Parallel Use of Multiple Proteases Facilitates Identification of Protein C-Termini by C-Terminomics

Prasath Somasundaram; Tomas Koudelka; Dennis Linke; Andreas Tholey

The identification of protein C-termini in complex proteomes is challenging due to the poor ionization efficiency of the carboxyl group. Amidating the negatively charged C-termini with ethanolamine (EA) has been suggested to improve the detection of C-terminal peptides and allows for a directed depletion of internal peptides after proteolysis using carboxyl reactive polymers. In the present study, the derivatization with N,N-dimethylethylenediamine (DMEDA) and (4-aminobutyl)guanidine (AG) leading to a positively charged C-terminus was investigated. C-terminal charge-reversed peptides showed improved coverage of b- and y-ion series in the MS/MS spectra compared to their noncharged counterparts. DMEDA-derivatized peptides resulted in many peptides with charge states of 3+, which benefited from ETD fragmentation. This makes the charge-reversal strategy particularly useful for the analysis of protein C-termini, which may also be post-translationally modified. The labeling strategy and the indirect enrichment of C-termini worked with similar efficiency for both DMEDA and EA, and their applicability was demonstrated on an E. coli proteome. Utilizing two proteases and different MS/MS activation mechanisms allowed for the identification of >400 C-termini, encompassing both canonical and truncated C-termini.

Collaboration


Dive into the Tomas Koudelka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge