Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomas Majtan is active.

Publication


Featured researches published by Tomas Majtan.


Angewandte Chemie | 2013

Identification of Cystathionine β‐Synthase Inhibitors Using a Hydrogen Sulfide Selective Probe

Megan K. Thorson; Tomas Majtan; Jan P. Kraus; Amy M. Barrios

Buzzing with activity: A hydrogen sulfide selective fluorogenic probe, 7-azido-4-methylcoumarin (AzMC), serves as a highly sensitive assay for cystathionine β-synthase activity, and is suitable for the high-throughput discovery of novel enzyme inhibitors.


Journal of Biological Chemistry | 2010

Rescue of cystathionine beta-synthase (CBS) mutants with chemical chaperones: purification and characterization of eight CBS mutant enzymes.

Tomas Majtan; Lu Liu; John F. Carpenter; Jan P. Kraus

Missense mutations represent the most common cause of many genetic diseases including cystathionine beta-synthase (CBS) deficiency. Many of these mutations result in misfolded proteins, which lack biological function. The presence of chemical chaperones can sometimes alleviate or even restore protein folding and activity of mutant proteins. We present the purification and characterization of eight CBS mutants expressed in the presence of chemical chaperones such as ethanol, dimethyl sulfoxide, or trimethylamine-N-oxide. Preliminary screening in Escherichia coli crude extracts showed that their presence during protein expression had a significant impact on the amount of recovered CBS protein, formation of tetramers, and catalytic activity. Subsequently, we purified eight CBS mutants to homogeneity (P49L, P78R, A114V, R125Q, E176K, P422L, I435T, and S466L). The tetrameric mutant enzymes fully saturated with heme had the same or higher specific activities than wild type CBS. Thermal stability measurements demonstrated that the purified mutants are equally or more thermostable than wild type CBS. The response to S-adenosyl-L-methionine stimulation or thermal activation varied. The lack of response of R125Q and E176K to both stimuli indicated that their specific conformations were unable to reach the activated state. Increased levels of molecular chaperones in crude extracts, particularly DnaJ, indicated a rather indirect effect of the chemical chaperones on folding of CBS mutants. In conclusion, the chemical chaperones present in the expression medium were able to fully restore the activity of eight CBS mutants by improving their protein folding. This finding could have direct implications for the development of a therapeutical approach to pyridoxine unresponsive homocystinuria.Missense mutations represent the most common cause of many genetic diseases including cystathionine β-synthase (CBS) deficiency. Many of these mutations result in misfolded proteins, which lack biological function. The presence of chemical chaperones can sometimes alleviate or even restore protein folding and activity of mutant proteins. We present the purification and characterization of eight CBS mutants expressed in the presence of chemical chaperones such as ethanol, dimethyl sulfoxide, or trimethylamine-N-oxide. Preliminary screening in Escherichia coli crude extracts showed that their presence during protein expression had a significant impact on the amount of recovered CBS protein, formation of tetramers, and catalytic activity. Subsequently, we purified eight CBS mutants to homogeneity (P49L, P78R, A114V, R125Q, E176K, P422L, I435T, and S466L). The tetrameric mutant enzymes fully saturated with heme had the same or higher specific activities than wild type CBS. Thermal stability measurements demonstrated that the purified mutants are equally or more thermostable than wild type CBS. The response to S-adenosyl-l-methionine stimulation or thermal activation varied. The lack of response of R125Q and E176K to both stimuli indicated that their specific conformations were unable to reach the activated state. Increased levels of molecular chaperones in crude extracts, particularly DnaJ, indicated a rather indirect effect of the chemical chaperones on folding of CBS mutants. In conclusion, the chemical chaperones present in the expression medium were able to fully restore the activity of eight CBS mutants by improving their protein folding. This finding could have direct implications for the development of a therapeutical approach to pyridoxine unresponsive homocystinuria.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Structural insight into the molecular mechanism of allosteric activation of human cystathionine β-synthase by S-adenosylmethionine

June Ereño-Orbea; Tomas Majtan; Iker Oyenarte; Jan P. Kraus; Luis Alfonso Martínez-Cruz

Significance Cystathionine β-synthase (CBS), the pivotal enzyme of the transsulfuration pathway, regulates flux through the pathway to yield compounds, such as cysteine, glutathione, taurine, and H2S, that control cellular redox status and signaling. Our crystal structure of an engineered human CBS construct bound to S-adenosylmethionine (AdoMet) reveals the unique binding site of the allosteric activator and the architecture of the human CBS enzyme in its activated conformation. Together with the basal conformation that we reported earlier, these structures unravel the molecular mechanism of human CBS activation by AdoMet. Current knowledge will allow for modeling of numerous pathogenic mutations causing inherited homocystinuria and for design of compounds modulating CBS activity. Cystathionine β-synthase (CBS) is a heme-dependent and pyridoxal-5′-phosphate–dependent protein that controls the flux of sulfur from methionine to cysteine, a precursor of glutathione, taurine, and H2S. Deficiency of CBS activity causes homocystinuria, the most frequent disorder of sulfur amino acid metabolism. In contrast to CBSs from lower organisms, human CBS (hCBS) is allosterically activated by S-adenosylmethionine (AdoMet), which binds to the regulatory domain and triggers a conformational change that allows the protein to progress from the basal toward the activated state. The structural basis of the underlying molecular mechanism has remained elusive so far. Here, we present the structure of hCBS with bound AdoMet, revealing the activated conformation of the human enzyme. Binding of AdoMet triggers a conformational change in the Bateman module of the regulatory domain that favors its association with a Bateman module of the complementary subunit to form an antiparallel CBS module. Such an arrangement is very similar to that found in the constitutively activated insect CBS. In the presence of AdoMet, the autoinhibition exerted by the regulatory region is eliminated, allowing for improved access of substrates to the catalytic pocket. Based on the availability of both the basal and the activated structures, we discuss the mechanism of hCBS activation by AdoMet and the properties of the AdoMet binding site, as well as the responsiveness of the enzyme to its allosteric regulator. The structure described herein paves the way for the rational design of compounds modulating hCBS activity and thus transsulfuration, redox status, and H2S biogenesis.


Journal of Biological Chemistry | 2008

Active Cystathionine β-Synthase Can Be Expressed in Heme-free Systems in the Presence of Metal-substituted Porphyrins or a Chemical Chaperone

Tomas Majtan; Laishram R. Singh; Liqun Wang; Warren D. Kruger; Jan P. Kraus

Cystathionine β-synthase (CBS), a key enzyme in the metabolism of homocysteine, has previously been shown to require a heme co-factor for maximal activity. However, the biochemical function of the CBS heme is not well defined. Here, we show that expression of human CBS in heme-deficient strains of Saccharomyces cerevisiae and Escherichia coli results in production of an enzyme that is misfolded and degraded. Addition of exogenous heme, porphyrins with non-iron metal, or porphyrin lacking metal entirely produced stable and active CBS enzyme. Purification of recombinant CBS enzyme expressed in the presence of various metalloporphyrins confirmed that Mn(III) and Co(III) had 30–60% of the specific activity of Fe(III)-CBS, and still responded to allosteric activation by S-adenosyl-l-methionine. Treatment of S. cerevisiae with the chemical chaperone trimethylamine-N-oxide resulted in near complete restoration of function to human CBS produced in a heme-deficient strain. Taken together, these results suggest that porphyrin moiety of the heme plays a critical role in proper CBS folding and assembly, but that the metal ion is not essential for this function or for allosteric regulation by S-adenosyl-l-methionine.


Protein Expression and Purification | 2012

Folding and activity of mutant cystathionine β-synthase depends on the position and nature of the purification tag: Characterization of the R266K CBS mutant

Tomas Majtan; Jan P. Kraus

Cystathionine β-synthase (CBS), a heme-containing pyridoxal-5-phosphate (PLP)-dependent enzyme, catalyzes the condensation of serine and homocysteine to yield cystathionine. Missense mutations in CBS, the most common cause of homocystinuria, often result in misfolded proteins. Arginine 266, where the pathogenic missense mutation R266K was identified, appears to be involved in the communication between heme and the PLP-containing catalytic center. Here, we assessed the effect of a short affinity tag (6xHis) compared to a bulky fusion partner (glutathione S-transferase - GST) on CBS wild type (WT) and R266K mutant enzyme properties. While WT CBS was successfully expressed either in conjunction with a GST or with a 6xHis tag, the mutant R266K CBS had no activity, did not form native tetramers and did not respond to chemical chaperone treatment when expressed with a GST fusion partner. Interestingly, expression of R266K CBS constructs with a 6xHis tag at either end yielded active enzymes. The purified, predominantly tetrameric, R266K CBS with a C-terminal 6xHis tag had ∼82% of the activity of a corresponding WT CBS construct. Results from thermal pre-treatment of the enzyme and the denaturation profile of R266K suggests a lower thermal stability of the mutant enzyme compared to WT, presumably due to a disturbed heme environment.


Journal of the American Chemical Society | 2009

DEER distance measurement between a spin label and a native FAD semiquinone in electron transfer flavoprotein.

Michael A. Swanson; Velavan Kathirvelu; Tomas Majtan; Frank E. Frerman; Gareth R. Eaton; Sandra S. Eaton

The human mitochondrial electron transfer flavoprotein (ETF) accepts electrons from at least 10 different flavoprotein dehydrogenases and transfers electrons to a single electron acceptor in the inner membrane. Paracoccus denitrificans ETF has the identical function, shares the same three-dimensional structure and functional domains, and exhibits the same conformational mobility. It has been proposed that the mobility of the alphaII domain permits the promiscuous behavior of ETF with respect to a variety of redox partners. Double electron-electron resonance (DEER) measurements between a spin label and an enzymatically reduced flavin adenine dinucleotide (FAD) cofactor in P. denitrificans ETF gave two distributions of distances: a major component centered at 4.2 +/- 0.1 nm and a minor component centered at 5.1 +/- 0.2 nm. Both components had widths of approximately 0.3 nm. A distance of 4.1 nm was calculated using the crystal structure of P. denitrificans ETF, which agrees with the major component obtained from the DEER measurement. The observation of a second distribution suggests that ETF, in the absence of substrate, adopts some conformations that are intermediate between the predominant free and substrate-bound states.


PLOS ONE | 2014

Domain Organization, Catalysis and Regulation of Eukaryotic Cystathionine Beta-Synthases

Tomas Majtan; Angel L. Pey; Roberto Fernández; José A. Fernández; Luis Alfonso Martínez-Cruz; Jan P. Kraus

Cystathionine beta-synthase (CBS) is a key regulator of sulfur amino acid metabolism diverting homocysteine, a toxic intermediate of the methionine cycle, via the transsulfuration pathway to the biosynthesis of cysteine. Although the pathway itself is well conserved among eukaryotes, properties of eukaryotic CBS enzymes vary greatly. Here we present a side-by-side biochemical and biophysical comparison of human (hCBS), fruit fly (dCBS) and yeast (yCBS) enzymes. Preparation and characterization of the full-length and truncated enzymes, lacking the regulatory domains, suggested that eukaryotic CBS exists in one of at least two significantly different conformations impacting the enzyme’s catalytic activity, oligomeric status and regulation. Truncation of hCBS and yCBS, but not dCBS, resulted in enzyme activation and formation of dimers compared to native tetramers. The dCBS and yCBS are not regulated by the allosteric activator of hCBS, S-adenosylmethionine (AdoMet); however, they have significantly higher specific activities in the canonical as well as alternative reactions compared to hCBS. Unlike yCBS, the heme-containing dCBS and hCBS showed increased thermal stability and retention of the enzyme’s catalytic activity. The mass-spectrometry analysis and isothermal titration calorimetry showed clear presence and binding of AdoMet to yCBS and hCBS, but not dCBS. However, the role of AdoMet binding to yCBS remains unclear, unlike its role in hCBS. This study provides valuable information for understanding the complexity of the domain organization, catalytic specificity and regulation among eukaryotic CBS enzymes.


Biometals | 2011

Effect of cobalt on Escherichia coli metabolism and metalloporphyrin formation

Tomas Majtan; Frank E. Frerman; Jan P. Kraus

Toxicity in Escherichia coli resulting from high concentrations of cobalt has been explained by competition of cobalt with iron in various metabolic processes including Fe–S cluster assembly, sulfur assimilation, production of free radicals and reduction of free thiol pool. Here we present another aspect of increased cobalt concentrations in the culture medium resulting in the production of cobalt protoporphyrin IX (CoPPIX), which was incorporated into heme proteins including membrane-bound cytochromes and an expressed human cystathionine beta-synthase (CBS). The presence of CoPPIX in cytochromes inhibited their electron transport capacity and resulted in a substantially decreased respiration. Bacterial cells adapted to the increased cobalt concentration by inducing a modified mixed acid fermentative pathway under aerobiosis. We capitalized on the ability of E. coli to insert cobalt into PPIX to carry out an expression of CoPPIX-substituted heme proteins. The level of CoPPIX-substitution increased with the number of passages of cells in a cobalt-containing medium. This approach is an inexpensive method to prepare cobalt-substituted heme proteins compared to in vitro enzyme reconstitution or in vivo replacement using metalloporphyrin heme analogs and seems to be especially suitable for complex heme proteins with an additional coenzyme, such as human CBS.


Protein Science | 2011

Electron transfer flavoprotein domain II orientation monitored using double electron-electron resonance between an enzymatically reduced, native FAD cofactor, and spin labels.

Michael A. Swanson; Velavan Kathirvelu; Tomas Majtan; Frank E. Frerman; Gareth R. Eaton; Sandra S. Eaton

Human electron transfer flavoprotein (ETF) is a soluble mitochondrial heterodimeric flavoprotein that links fatty acid β‐oxidation to the main respiratory chain. The crystal structure of human ETF bound to medium chain acyl‐CoA dehydrogenase indicates that the flavin adenine dinucleotide (FAD) domain (αII) is mobile, which permits more rapid electron transfer with donors and acceptors by providing closer access to the flavin and allows ETF to accept electrons from at least 10 different flavoprotein dehydrogenases. Sequence homology is high and low‐angle X‐ray scattering is identical for Paracoccus denitrificans (P. denitrificans) and human ETF. To characterize the orientations of the αII domain of P. denitrificans ETF, distances between enzymatically reduced FAD and spin labels in the three structural domains were measured by double electron‐electron resonance (DEER) at X‐ and Q‐bands. An FAD to spin label distance of 2.8 ± 0.15 nm for the label in the FAD‐containing αII domain (A210C) agreed with estimates from the crystal structure (3.0 nm), molecular dynamics simulations (2.7 nm), and rotamer library analysis (2.8 nm). Distances between the reduced FAD and labels in αI (A43C) were between 4.0 and 4.5 ± 0.35 nm and for βIII (A111C) the distance was 4.3 ± 0.15 nm. These values were intermediate between estimates from the crystal structure of P. denitrificans ETF and a homology model based on substrate‐bound human ETF. These distances suggest that the αII domain adopts orientations in solution that are intermediate between those which are observed in the crystal structures of free ETF (closed) and ETF bound to a dehydrogenase (open).


Biochimie | 2016

Kinetic stability of cystathionine beta-synthase can be modulated by structural analogs of S-adenosylmethionine: Potential approach to pharmacological chaperone therapy for homocystinuria

Tomas Majtan; Angel L. Pey; Jan P. Kraus

Many pathogenic missense mutations in human cystathionine beta-synthase (CBS) cause misfolding of the mutant enzyme resulting in aggregation or rapid degradation of the protein. Subsequent loss of CBS function leads to CBS-deficient homocystinuria (CBSDH). CBS contains two sets of binding sites for S-adenosylmethionine (SAM) that independently regulate the enzyme activity and kinetically stabilize its regulatory domain. In the present study, we examined the hypothesis that CBS activation may be decoupled from kinetic stabilization and thus CBS regulatory domain can serve as a novel drug target for CBSDH. We determined the effect of SAM and its close structural analogs on CBS activity, their binding to and stabilization of the regulatory domain in the absence and presence of competing SAM. Binding of S-adenosylhomocysteine and sinefungin lead to stabilization of the regulatory domains without activation of CBS. Direct titrations and competition experiments support specific binding of these two SAM analogs to the stabilizing sites. Binding of these two ligands also affects the enzyme proteolysis rate supporting the role of the stabilizing sites in CBS dynamics. Our results indicate that binding of SAM to regulatory and stabilizing sites in CBS may have evolved to display an exquisite thermodynamic and structural specificity towards SAM as well as the ability to transduce the allosteric signal responsible for CBS activation. Thus, ligands may be developed to function as kinetic stabilizers or pharmacological chaperones without interfering with the physiological activation of CBS by SAM.

Collaboration


Dive into the Tomas Majtan's collaboration.

Top Co-Authors

Avatar

Jan P. Kraus

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Luis Alfonso Martínez-Cruz

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Insun Park

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron T. Smith

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Frank E. Frerman

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Judith N. Burstyn

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Erez M. Bublil

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Erez M. Bublil

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge