Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomas Rejtar is active.

Publication


Featured researches published by Tomas Rejtar.


Proceedings of the National Academy of Sciences of the United States of America | 2006

An unconventional pathway for reduction of CO2 to methane in CO-grown Methanosarcina acetivorans revealed by proteomics

Daniel J. Lessner; Lingyun Li; Qingbo Li; Tomas Rejtar; Victor P. Andreev; Matthew J. Reichlen; Kevin T. Hill; James J. Moran; Barry L. Karger; James G. Ferry

Methanosarcina acetivorans produces acetate, formate, and methane when cultured with CO as the growth substrate [Rother M, Metcalf WW (2004) Proc Natl Acad Sci USA 101:16929–16934], which suggests novel features of CO metabolism. Here we present a genome-wide proteomic approach to identify and quantify proteins differentially abundant in response to growth on CO versus methanol or acetate. The results indicate that oxidation of CO to CO2 supplies electrons for reduction of CO2 to a methyl group by steps and enzymes of the pathway for CO2 reduction determined for other methane-producing species. However, proteomic and quantitative RT-PCR results suggest that reduction of the methyl group to methane involves novel methyltransferases and a coenzyme F420H2:heterodisulfide oxidoreductase system that generates a proton gradient for ATP synthesis not previously described for pathways reducing CO2 to methane. Biochemical assays support a role for the oxidoreductase, and transcriptional mapping identified an unusual operon structure encoding the oxidoreductase. The proteomic results further indicate that acetate is synthesized from the methyl group and CO by a reversal of initial steps in the pathway for conversion of acetate to methane that yields ATP by substrate level phosphorylation. The results indicate that M. acetivorans utilizes a pathway distinct from all known CO2 reduction pathways for methane formation that reflects an adaptation to the marine environment. Finally, the pathway supports the basis for a recently proposed primitive CO-dependent energy-conservation cycle that drove and directed the early evolution of life on Earth.


Journal of Bacteriology | 2006

Electron Transport in the Pathway of Acetate Conversion to Methane in the Marine Archaeon Methanosarcina acetivorans

Qingbo Li; Lingyun Li; Tomas Rejtar; Daniel J. Lessner; Barry L. Karger; James G. Ferry

A liquid chromatography-hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometry approach was used to determine the differential abundance of proteins in acetate-grown cells compared to that of proteins in methanol-grown cells of the marine isolate Methanosarcina acetivorans metabolically labeled with 14N versus 15N. The 246 differentially abundant proteins in M. acetivorans were compared with the previously reported 240 differentially expressed genes of the freshwater isolate Methanosarcina mazei determined by transcriptional profiling of acetate-grown cells compared to methanol-grown cells. Profound differences were revealed for proteins involved in electron transport and energy conservation. Compared to methanol-grown cells, acetate-grown M. acetivorans synthesized greater amounts of subunits encoded in an eight-gene transcriptional unit homologous to operons encoding the ion-translocating Rnf electron transport complex previously characterized from the Bacteria domain. Combined with sequence and physiological analyses, these results suggest that M. acetivorans replaces the H2-evolving Ech hydrogenase complex of freshwater Methanosarcina species with the Rnf complex, which generates a transmembrane ion gradient for ATP synthesis. Compared to methanol-grown cells, acetate-grown M. acetivorans synthesized a greater abundance of proteins encoded in a seven-gene transcriptional unit annotated for the Mrp complex previously reported to function as a sodium/proton antiporter in the Bacteria domain. The differences reported here between M. acetivorans and M. mazei can be attributed to an adaptation of M. acetivorans to the marine environment.


Analytical Chemistry | 2011

Ultrasensitive characterization of site-specific glycosylation of affinity-purified haptoglobin from lung cancer patient plasma using 10 μm i.d. porous layer open tubular liquid chromatography-linear ion trap collision-induced dissociation/electron transfer dissociation mass spectrometry.

Dongdong Wang; Marina Hincapie; Tomas Rejtar; Barry L. Karger

Site-specific analysis of protein glycosylation is important for biochemical and clinical research efforts. Glycopeptide analysis using liquid chromatography-collision-induced dissociation/electron transfer dissociation mass spectrometry (LC-CID/ETD-MS) allows simultaneous characterization of the glycan structure and attached peptide site. However, due to the low ionization efficiency of glycopeptides during electrospray ionization, 200-500 fmol of sample per injection is needed for a single LC-MS run, which makes it challenging for the analysis of limited amounts of glycoprotein purified from biological matrixes. To improve the sensitivity of LC-MS analysis for glycopeptides, an ultranarrow porous layer open tubular (PLOT) LC column (2.5 m × 10 μm i.d.) was coupled to a linear ion trap (LTQ) collision-induced dissociation/electron transfer dissociation mass spectrometer to provide sensitive analysis of N-linked protein glycosylation heterogeneity. The potential of the developed method is demonstrated by the characterization of site-specific glycosylation using haptoglobin (Hpt) as a model protein. To limit the amount of haptoglobin to low picomole amounts of protein, we affinity purified it from 1 μL of pooled lung cancer patient plasma. A total of 26 glycoforms/glycan compositions on three Hpt tryptic glycopeptides were identified and quantified from 10 LC-MS runs with a consumption of 100 fmol of Hpt digest (13 ng of protein, 10 fmol per injection). Included in this analysis was the determination of the glycan occupancy level. At this sample consumption level, the high sensitivity of the PLOT LC-LTQ-CID/ETD-MS system allowed glycopeptide identification and structure determination, along with relative quantitation of glycans presented on the same peptide backbone, even for low abundant glycopeptides at the ∼100 amol level. The PLOT LC-MS system is shown to have sufficient sensitivity to allow characterization of site-specific protein glycosylation from trace levels of glycosylated proteins.


Electrophoresis | 2010

IMPROVED SAMPLE PREPARATION METHOD FOR GLYCAN ANALYSIS OF GLYCOPROTEINS BY CE-LIF AND CE-MS

Zoltan Szabo; András Guttman; Tomas Rejtar; Barry L. Karger

CE is a high‐resolution separation technique broadly used in the biotechnology industry for carbohydrate analysis. The standard sample preparation protocol for CE analysis of glycans released from glycoproteins generally requires derivatization times of overnight at 37°C, using ≥100 fold excess of fluorophore reagent, 8‐aminopyrene‐1,3,6‐trisulfonic‐acid, if the sample is unknown, or it is a regulated biotherapeutic product, possibly containing terminal sialic acid(s). In this paper, we report on significant improvements for the standard CE sample preparation method of glycan analysis. By replacing the conventionally used acetic acid catalyst with citric acid, as low as 1:10 glycan to fluorophore molar ratio (versus the typical 1:≥100 ratio) maintained the >95% derivatization yield at 55°C with only 50 min reaction time. Terminal sialic acid loss was negligible at 55°C during the derivatization process, and indicating that the kinetics of labeling at 55°C was faster than the loss of sialic acid from the glycan. The reduced relative level of 8‐aminopyrene‐1,3,6‐trisulfonic‐acid simplified the removal of excess reagent, important in both CE‐LIF (electrokinetic injection bias) and CE‐MS (ion suppression). Coupling CE‐ ESI‐MS confirmed that the individual peaks separated by CE corresponded to single glycans and increased the confidence of structural assignment based on glucose unit values.


Molecular & Cellular Proteomics | 2010

In Situ Proteomic Analysis of Human Breast Cancer Epithelial Cells Using Laser Capture Microdissection: Annotation by Protein Set Enrichment Analysis and Gene Ontology

Sangwon Cha; Marcin Imielinski; Tomas Rejtar; Elizabeth Richardson; Dipak Thakur; Dennis C. Sgroi; Barry L. Karger

Identification of molecular signatures that allow detection of the transition from normal breast epithelial cells to malignant invasive cells is a critical component in the development of diagnostic, therapeutic, and preventative strategies for human breast cancer. Substantial efforts have been devoted to deciphering breast cancer etiology at the genome level, but only a limited number of studies have appeared at the proteome level. In this work, we compared individual in situ proteome profiles of nonpatient matched nine noncancerous, normal breast epithelial (NBE) samples with nine estrogen receptor (ER)-positive (luminal subtype), invasive malignant breast epithelial (MBE) samples by combining laser capture microdissection (LCM) and quantitative shotgun proteomics. A total of 12,970 unique peptides were identified from the 18 samples, and 1623 proteins were selected for quantitative analysis using spectral index (SpI) as a measure of protein abundance. A total of 298 proteins were differentially expressed between NBE and MBE at 95% confidence level, and this differential expression correlated well with immunohistochemistry (IHC) results reported in the Human Protein Atlas (HPA) database. To assess pathway level patterns in the observed expression changes, we developed protein set enrichment analysis (PSEA), a modification of a well-known approach in gene expression analysis, Gene Set Enrichment Analysis (GSEA). Unlike single gene-based functional term enrichment analyses that only examines pathway overrepresentation of proteins above a given significance threshold, PSEA applies a weighted running sum statistic to the entire expression data to discover significantly enriched protein groups. Application of PSEA to the expression data in this study revealed not only well-known ER-dependent and cellular morphology-dependent protein abundance changes, but also significant alterations of downstream targets for multiple transcription factors (TFs), suggesting a role for specific gene regulatory pathways in breast tumorigenesis. A parallel GOMiner analysis revealed both confirmatory and complementary data to PSEA. The combination of the two annotation approaches yielded extensive biological feature mapping for in depth analysis of the quantitative proteomic data.


BMC Developmental Biology | 2011

Histone Deacetylase activity is necessary for left-right patterning during vertebrate development

Katia Carneiro; Claudia Donnet; Tomas Rejtar; Barry L. Karger; Gustavo A. Barisone; Elva Díaz; Joan M. Lemire; Michael Levin

BackgroundConsistent asymmetry of the left-right (LR) axis is a crucial aspect of vertebrate embryogenesis. Asymmetric gene expression of the TGFβ superfamily member Nodal related 1 (Nr1) in the left lateral mesoderm plate is a highly conserved step regulating the situs of the heart and viscera. In Xenopus, movement of maternal serotonin (5HT) through gap-junctional paths at cleavage stages dictates asymmetry upstream of Nr1. However, the mechanisms linking earlier biophysical asymmetries with this transcriptional control point are not known.ResultsTo understand how an early physiological gradient is transduced into a late, stable pattern of Nr1 expression we investigated epigenetic regulation during LR patterning. Embryos injected with mRNA encoding a dominant-negative of Histone Deacetylase (HDAC) lacked Nr1 expression and exhibited randomized sidedness of the heart and viscera (heterotaxia) at stage 45. Timing analysis using pharmacological blockade of HDACs implicated cleavage stages as the active period. Inhibition during these early stages was correlated with an absence of Nr1 expression at stage 21, high levels of heterotaxia at stage 45, and the deposition of the epigenetic marker H3K4me2 on the Nr1 gene. To link the epigenetic machinery to the 5HT signaling pathway, we performed a high-throughput proteomic screen for novel cytoplasmic 5HT partners associated with the epigenetic machinery. The data identified the known HDAC partner protein Mad3 as a 5HT-binding regulator. While Mad3 overexpression led to an absence of Nr1 transcription and randomized the LR axis, a mutant form of Mad3 lacking 5HT binding sites was not able to induce heterotaxia, showing that Mad3s biological activity is dependent on 5HT binding.ConclusionHDAC activity is a new LR determinant controlling the epigenetic state of Nr1 from early developmental stages. The HDAC binding partner Mad3 may be a new serotonin-dependent regulator of asymmetry linking early physiological asymmetries to stable changes in gene expression during organogenesis.


Journal of Chromatography A | 2009

Hydrophilic Interaction 10 μm I.D. Porous Layer Open Tubular Columns for Ultratrace Glycan Analysis by Liquid Chromatography-Mass Spectrometry

Quanzhou Luo; Tomas Rejtar; Shiaw-Lin Wu; Barry L. Karger

The sensitivity of glycan analysis using nano-liquid chromatography interfaced with electrospray ionization mass spectrometry (ESI-MS) increases with the decrease of the mobile phase flow rate, accompanied by reduced ion suppression. In this study, we describe the preparation and performance of high efficiency 10 microm I.D. amine-bonded poly(vinylbenzyl chloride-divinylbenzene) hydrophilic interaction (HILIC) porous layer open tubular (PLOT) columns operated at 20 nL/min for the separation and analysis of glycan mixtures. HILIC-PLOT columns with a uniform porous polymer layer were reproducibly prepared ( approximately 4% RSD in retention time from column-to-column) via in situ polymerization, followed by one step modification with ethylenediamine. When coupled on-line with negative ESI-MS, low detection limits (0.3fmol) for a 3-sialyl-tetrasaccharide were achieved using a 2.5mx10 microm I.D. HILIC-PLOT column. A dextran ladder standard was used to evaluate the performance of the column, and high efficiency separation was achieved with detection of the dextrans up to G22 from approximately 50 fmol amounts injected. As an example of the high sensitivity of the column, MS(6) characterization of glycan structures was possible from the injection of 10 fmol of a neutral and sialylated glycan. As another example of high sensitivity LC-MS analysis of 3 ng of a PNGase F digest of ovalbumin allowed 28 N-linked glycans to be confidently identified from a single analysis. High quality MS/MS spectra for each ovalbumin glycan were acquired and manually interpreted for structure analysis. The HILIC-PLOT column is a very promising approach for LC-MS analysis of glycans at the ultratrace level.


Journal of Chromatography A | 2011

Microproteomic analysis of 10,000 laser captured microdissected breast tumor cells using short-range sodium dodecyl sulfate-polyacrylamide gel electrophoresis and porous layer open tubular liquid chromatography tandem mass spectrometry

Dipak Thakur; Tomas Rejtar; Dongdong Wang; Jonathan Bones; Sangwon Cha; Buffie Clodfelder-Miller; Elizabeth Richardson; Shemeica Binns; Sonika Dahiya; Dennis C. Sgroi; Barry L. Karger

Precise proteomic profiling of limited levels of disease tissue represents an extremely challenging task. Here, we present an effective and reproducible microproteomic workflow for sample sizes of only 10,000 cells that integrates selective sample procurement via laser capture microdissection (LCM), sample clean-up and protein level fractionation using short-range SDS-PAGE, followed by ultrasensitive LC-MS/MS analysis using a 10 μm i.d. porous layer open tubular (PLOT) column. With 10,000 LCM captured mouse hepatocytes for method development and performance assessment, only 10% of the in-gel digest, equivalent to ∼1000 cells, was needed per LC-MS/MS analysis. The optimized workflow was applied to the differential proteomic analysis of 10,000 LCM collected primary and metastatic breast cancer cells from the same patient. More than 1100 proteins were identified from each injection with >1700 proteins identified from three LCM samples of 10,000 cells from the same patient (1123 with at least two unique peptides). Label free quantitation (spectral counting) was performed to identify differential protein expression between the primary and metastatic cell populations. Informatics analysis of the resulting data indicated that vesicular transport and extracellular remodeling processes were significantly altered between the two cell types. The ability to extract meaningful biological information from limited, but highly informative cell populations demonstrates the significant benefits of the described microproteomic workflow.


Analytical Chemistry | 2009

Profiling the Glycoforms of the Intact α Subunit of Recombinant Human Chorionic Gonadotropin by High-Resolution Capillary Electrophoresis-Mass Spectrometry

Dipak Thakur; Tomas Rejtar; Barry L. Karger; Nathaniel Washburn; Carlos J. Bosques; Nur Sibel Gunay; Zachary Shriver; Ganesh Venkataraman

With the rapid growth of complex heterogeneous biological molecules, effective techniques that are capable of rapid characterization of biologics are essential to ensure the desired product characteristics. To address this need, we have developed a method for analysis of intact glycoproteins based on high-resolution capillary electrophoretic separation coupled to an LTQ-FT mass spectrometer. We evaluated the performance of this method on the alpha subunit of mouse cell line-derived recombinant human chorionic gonadotrophin (r-alpha hCG), a protein that is glycosylated at two sites and is part of the clinically relevant gonadotrophin family. Analysis of r-alpha hCG, using capillary electrophoresis (CE) with a separation time under 20 min, resulted in the identification of over 60 different glycoforms with up to nine sialic acids. High-resolution CE-Fourier transform mass spectrometry (FT-MS) allowed separation and analysis of not only intact glycoforms with different numbers of sialic acids but also intact glycoforms that differed by the number and extent of neutral monosaccharides. The high mass resolution of the FT-MS enabled a limited mass range to be targeted for the examination of the protein glycoforms, simplifying the analysis without sacrificing accuracy. In addition, the limited mass range resulted in a fast scan speed that enhanced the reproducibility of the relative quantitation of individual glycoforms. The intact glycoprotein analysis was complemented with the analysis of the tryptic glycopeptides and glycans of r-alpha hCG to enable the assignment of glycan structures to individual sites, resulting in a detailed characterization of the protein. Samples of r-alpha hCG obtained from a CHO cell line were also analyzed and briefly shown to be significantly different from the murine cell line product. Taken together, the results suggest that the CE coupled to high-resolution FT-MS can be one of the effective tools for in-process monitoring as well as for final product characterization.


Molecular & Cellular Proteomics | 2012

Integrated Proteomic, Transcriptomic, and Biological Network Analysis of Breast Carcinoma Reveals Molecular Features of Tumorigenesis and Clinical Relapse

Marcin Imielinski; Sangwon Cha; Tomas Rejtar; Elizabeth Richardson; Barry L. Karger; Dennis C. Sgroi

Gene and protein expression changes observed with tumorigenesis are often interpreted independently of each other and out of context of biological networks. To address these limitations, this study examined several approaches to integrate transcriptomic and proteomic data with known protein-protein and signaling interactions in estrogen receptor positive (ER+) breast cancer tumors. An approach that built networks from differentially expressed proteins and identified among them networks enriched in differentially expressed genes yielded the greatest success. This method identified a set of genes and proteins linking pathways of cellular stress response, cancer metabolism, and tumor microenvironment. The proposed network underscores several biologically intriguing events not previously studied in the context of ER+ breast cancer, including the overexpression of p38 mitogen-activated protein kinase and the overexpression of poly(ADP-ribose) polymerase 1. A gene-based expression signature biomarker built from this network was significantly predictive of clinical relapse in multiple independent cohorts of ER+ breast cancer patients, even after correcting for standard clinicopathological variables. The results of this study demonstrate the utility and power of an integrated quantitative proteomic, transcriptomic, and network analysis approach to discover robust and clinically meaningful molecular changes in tumors.

Collaboration


Dive into the Tomas Rejtar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lingyun Li

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James G. Ferry

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Qingbo Li

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor P. Andreev

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Victor P. Andreev

Russian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge