Tomas Roslin
Swedish University of Agricultural Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tomas Roslin.
Science | 2012
Yves Basset; Lukas Cizek; Philippe Cuénoud; Raphael K. Didham; François Guilhaumon; Olivier Missa; Vojtech Novotny; Frode Ødegaard; Tomas Roslin; Juergen Schmidl; Alexey K. Tishechkin; Neville N. Winchester; David W. Roubik; Henri-Pierre Aberlenc; Johannes Bail; Héctor Barrios; Jon R. Bridle; Bruno Corbara; Gianfranco Curletti; Wesley Duarte da Rocha; Domir De Bakker; Jacques Hubert Charles Delabie; Alain Dejean; Laura L. Fagan; Andreas Floren; Roger Kitching; Enrique Medianero; Scott E. Miller; Evandro Gama de Oliveira; Jérôme Orivel
Assessing Creepy Crawlies Arthropods are the most diverse group of terrestrial animal species, yet estimates of the total number of arthropod species have varied widely, especially for tropical forests. Basset et al. (p. 1481, see the cover) now provide more reliable estimates of total arthropod species richness in a tropical rainforest in Panama. Intensive sampling of a half hectare of forest yielded just over 6000 arthropod species. Scaling up this result to the whole forest suggests that the total species diversity lies between 17,000 and 40,000 species. Total arthropod species richness in a tropical rainforest can be best predicted by plant diversity. Most eukaryotic organisms are arthropods. Yet, their diversity in rich terrestrial ecosystems is still unknown. Here we produce tangible estimates of the total species richness of arthropods in a tropical rainforest. Using a comprehensive range of structured protocols, we sampled the phylogenetic breadth of arthropod taxa from the soil to the forest canopy in the San Lorenzo forest, Panama. We collected 6144 arthropod species from 0.48 hectare and extrapolated total species richness to larger areas on the basis of competing models. The whole 6000-hectare forest reserve most likely sustains 25,000 arthropod species. Notably, just 1 hectare of rainforest yields >60% of the arthropod biodiversity held in the wider landscape. Models based on plant diversity fitted the accumulated species richness of both herbivore and nonherbivore taxa exceptionally well. This lends credence to global estimates of arthropod biodiversity developed from plant models.
Journal of Chemical Ecology | 2004
Juha-Pekka Salminen; Tomas Roslin; Maarit Karonen; Jari Sinkkonen; Kalevi Pihlaja; Pertti Pulkkinen
Oaks have been one of the classic model systems in elucidating the role of polyphenols in plant–herbivore interactions. This study provides a comprehensive description of seasonal variation in the phenolic content of the English oak (Quercus robur). Seven different trees were followed over the full course of the growing season, and their foliage repeatedly sampled for gallic acid, 9 individual hydrolyzable tannins, and 14 flavonoid glycosides, as well as for total phenolics, total proanthocyanidins, carbon, and nitrogen. A rare dimeric ellagitannin, cocciferin D2, was detected for the first time in leaves of Q. robur, and relationships between the chemical structures of individual tannins were used to propose a biosynthetic pathway for its formation. Overall, hydrolyzable tannins were the dominant phenolic group in leaves of all ages. Nevertheless, young oak leaves were much richer in hydrolyzable tannins and flavonoid glycosides than old leaves, whereas the opposite pattern was observed for proanthocyanidins. However, when quantified as individual compounds, hydrolyzable tannins and flavonoid glycosides showed highly variable seasonal patterns. This large variation in temporal trends among compounds, and a generally weak correlation between the concentration of any individual compound and the total concentration of phenolics, as quantified by the Folin–Ciocalteau method, leads us to caution against the uncritical use of summary quantifications of composite phenolic fractions in ecological studies.
Ecology Letters | 2008
Thomas M. Lewinsohn; Tomas Roslin
Most multicellular species alive are tropical arthropods associated with plants. Hence, the host-specificity of these species, and their diversity at different scales, are keys to understanding the assembly structure of global biodiversity. We present a comprehensive scheme in which tropical herbivore megadiversity can be partitioned into the following components: (A) more host plant species per se, (B) more arthropod species per plant species, (C) higher host specificity of herbivores, or (D) higher species turnover (beta diversity) in the tropics than in the temperate zone. We scrutinize recent studies addressing each component and identify methodological differences among them. We find substantial support for the importance of component A, more tropical host species. A meta-analysis of published results reveals intermediate to high correlations between plant and herbivore diversity, accounting for up to 60% of the variation in insect species richness. Support for other factors is mixed, with studies too scarce and approaches too uneven to allow for quantitative summaries. More research on individual components is unlikely to resolve their relative contribution to overall herbivore diversity. Instead, we call for the adoption of more coherent methods that avoid pitfalls for larger-scale comparisons, for studies assessing different components together rather than singly, and for studies that investigate herbivore beta-diversity (component D) in a more comprehensive perspective.
Ecology | 2005
Ingrid Quintero; Tomas Roslin
Few studies have directly assessed how rapidly functionally important insect communities recover following rain forest loss and fragmentation. In 1986, B. Klein com- pared the dung and carrion beetle assemblages of clearcuts, fragmented, and non-fragmented forests in central Amazonia, reporting drastic short-term changes in community composi- tion. Fifteen years later, we resampled the same sites using identical techniques and found that, with the regrowth of secondary vegetation between forest fragments, the initial dif- ferences had largely disappeared. As the secondary vegetation itself supports dung beetle assemblages similar to those of continuous forest, we conclude that, from the perspective of the dung beetles, the experimentally fragmented area had returned to a continuous state within approximately one decade. These results offer some good news for the conservation of tropical ecosystems, since they suggest that conditions favorable for functionally im- portant arthropods may be quickly restored by secondary regrowth. They also suggest that the preservation of forest fragments and secondary vegetation may provide an important complement to the conservation of intact mature forest.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Helena Wirta; Paul D. N. Hebert; Riikka Kaartinen; Sean W. J. Prosser; Gergely Várkonyi; Tomas Roslin
Significance Understanding the interaction structure of ecological assemblages is the basis for understanding how they vary in space and time. To reconstruct interactions in the High Arctic, we draw on three sources of information: two based on DNA sequence data and one on the rearing of parasitoids from their hosts. Overall, we show that a combination of all three techniques will not only provide high resolution for describing feeding associations among individual species, but also revamp our view of the overall structure of the target network. Thus, our findings suggest that combining several types of information will fundamentally change our impression of both how local interaction webs are structured, and how biotic interactions are patterned across the globe. How networks of ecological interactions are structured has a major impact on their functioning. However, accurately resolving both the nodes of the webs and the links between them is fraught with difficulties. We ask whether the new resolution conferred by molecular information changes perceptions of network structure. To probe a network of antagonistic interactions in the High Arctic, we use two complementary sources of molecular data: parasitoid DNA sequenced from the tissues of their hosts and host DNA sequenced from the gut of adult parasitoids. The information added by molecular analysis radically changes the properties of interaction structure. Overall, three times as many interaction types were revealed by combining molecular information from parasitoids and hosts with rearing data, versus rearing data alone. At the species level, our results alter the perceived host specificity of parasitoids, the parasitoid load of host species, and the web-wide role of predators with a cryptic lifestyle. As the northernmost network of host–parasitoid interactions quantified, our data point exerts high leverage on global comparisons of food web structure. However, how we view its structure will depend on what information we use: compared with variation among networks quantified at other sites, the properties of our web vary as much or much more depending on the techniques used to reconstruct it. We thus urge ecologists to combine multiple pieces of evidence in assessing the structure of interaction webs, and suggest that current perceptions of interaction structure may be strongly affected by the methods used to construct them.
Ecological Entomology | 2010
Riikka Kaartinen; Graham N. Stone; Jack Hearn; Konrad Lohse; Tomas Roslin
1. How food webs are structured will affect how species dynamically interact. To date, the construction of quantitative food webs has largely been based on morphological species characters. Yet, recent work suggests that the use of molecular characters may change our perception of both species limits and species identity.
Ecology | 2010
Ayco J. M. Tack; Otso Ovaskainen; Pertti Pulkkinen; Tomas Roslin
Recent work has shown a potential role for both host plant genotype and spatial context in structuring insect communities. In this study, we use three separate data sets on herbivorous insects on oak (Quercus robur) to estimate the relative effects of host plant genotype (G), location (E), and the G x E interaction on herbivore community structure: a common garden experiment replicated at the landscape scale (approximately 5 km2); two common gardens separated at the regional scale (approximately 10 000 km2); and survey data on wild trees in various spatial settings. Our experiments and survey reveal that, at the landscape scale, the insect community is strongly affected by the spatial setting, with 32% of the variation in species richness explained by spatial connectivity. In contrast, G and G x E play minor roles in structuring the insect community. Results remained similar when extending the spatial scale of the study from the more local (landscape) level to the regional level. We conclude that in our study system, spatial processes play a major role in structuring these insect communities at both the landscape and regional scales, whereas host plant genotype seems of secondary importance.
Ecology Letters | 2017
Otso Ovaskainen; Gleb Tikhonov; Anna Norberg; F. Guillaume Blanchet; Leo L. Duan; David B. Dunson; Tomas Roslin; Nerea Abrego
Community ecology aims to understand what factors determine the assembly and dynamics of species assemblages at different spatiotemporal scales. To facilitate the integration between conceptual and statistical approaches in community ecology, we propose Hierarchical Modelling of Species Communities (HMSC) as a general, flexible framework for modern analysis of community data. While non-manipulative data allow for only correlative and not causal inference, this framework facilitates the formulation of data-driven hypotheses regarding the processes that structure communities. We model environmental filtering by variation and covariation in the responses of individual species to the characteristics of their environment, with potential contingencies on species traits and phylogenetic relationships. We capture biotic assembly rules by species-to-species association matrices, which may be estimated at multiple spatial or temporal scales. We operationalise the HMSC framework as a hierarchical Bayesian joint species distribution model, and implement it as R- and Matlab-packages which enable computationally efficient analyses of large data sets. Armed with this tool, community ecologists can make sense of many types of data, including spatially explicit data and time-series data. We illustrate the use of this framework through a series of diverse ecological examples.
Ecology Letters | 2014
Rebecca J. Morris; Sofia Gripenberg; Owen T. Lewis; Tomas Roslin
An increase in species richness with decreasing latitude is a prominent pattern in nature. However, it remains unclear whether there are corresponding latitudinal gradients in the properties of ecological interaction networks. We investigated the structure of 216 quantitative antagonistic networks comprising insect hosts and their parasitoids, drawn from 28 studies from the High Arctic to the tropics. Key metrics of network structure were strongly affected by the size of the interaction matrix (i.e. the total number of interactions documented between individuals) and by the taxonomic diversity of the host taxa involved. After controlling for these sampling effects, quantitative networks showed no consistent structural patterns across latitude and host guilds, suggesting that there may be basic rules for how sets of antagonists interact with resource species. Furthermore, the strong association between network size and structure implies that many apparent spatial and temporal variations in network structure may prove to be artefacts.
Ecology Letters | 2012
Ayco J. M. Tack; Sofia Gripenberg; Tomas Roslin
Although phytophagous insects and plant pathogens frequently share the same host plant, interactions among such phylogenetically distant taxa have received limited attention. Here, we place pathogens and insects in the context of a multitrophic-level community. Focusing on the invasive powdery mildew Erysiphe alphitoides and the insect community on oak (Quercus robur), we demonstrate that mildew-insect interactions may be mediated by both the host plant and by natural enemies, and that the trait-specific outcome of individual interactions can range from negative to positive. Moreover, mildew affects resource selection by insects, thereby modifying the distribution of a specialist herbivore at two spatial scales (within and among trees). Finally, a long-term survey suggests that species-specific responses to mildew scale up to generate landscape-level variation in the insect community structure. Overall, our results show that frequently overlooked cross-kingdom interactions may play a major role in structuring terrestrial plant-based communities.