Tomasz Blasiak
Jagiellonian University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tomasz Blasiak.
Neuroreport | 2000
Marian H. Lewandowski; Tomasz Blasiak; Jacek Domoslawski; Anna Wolkowska
Our paper is the first to describe ultradian rhythmic neuronal oscillation in the intergeniculate leaflet (IGL) of the rat. We recorded a multiple-unit neuronal activity (MUA) from dorsal to ventral parts of the lateral geniculate nucleus (LGN) in anaesthetized rats. In all the subdivisions of the lateral geniculate complex we observed spontaneous irregular firing rates of cells. However only at the anatomical localisation of the IGL, after the light was on, those responses exhibited burst firing with a constant interburst interval, which lasted several hours until the light was off. The duration of that rhythmic oscillation obtained by means of Fouriers analysis was ∼124 s. To date we have not had sufficient data to discuss possible mechanisms of this neuronal rhythmicity. We can only conclude that light is the most important stimulus not only for suprachiasmatic nuclei (SCN), but also for the IGL. On the other hand, we can neither exclude nor confirm that in order to evoke ultradian rhythmical oscillation in the IGL, in addition to light also non-photic information is necessary.
European Journal of Neuroscience | 2011
Dobromila Pekala; Tomasz Blasiak; Morten Raastad; Marian H. Lewandowski
Orexins influence various physiological processes associated with feeding behaviour, endocrine functions and wakefulness. One component of mammalian circadian timing systems, intergeniculate leaflet (IGL) of the lateral geniculate nucleus, is thought to contribute to circadian entrainment by processing photic and non‐photic/arousal‐related signals. Because the IGL is possibly innervated by the orexinergic system, using in vitro extracellular recording techniques we evaluated the influence of orexin A (OXA) and orexin B (OXB) on the rate and pattern of neuronal firing in this structure. Significant increases in the activity of 33 and 28% of IGL cells were observed after locally applied OXA (1 μm) and OXB (1 μm), respectively. In the great majority of neurons responses to OXA were maintained in the presence of orexin‐1 receptor OX1R antagonist, SB 334867 (10 μm). Additionally, 75% of the OXB‐responsive neurons were also sensitive to an orexin‐2 receptor (OX2R)‐selective agonist, [Ala11, D‐Leu15]‐OXB (1 μm). Immunohistochemical stainings showed putative synaptic contacts between OXA‐ and OXB‐immunoreactive fibres and neuropeptide Y, and enkephalin‐positive neurons in the investigated area. The outcome of our experiments reinforces previous reports indicating the possible linkage between the orexinergic and circadian systems. To our knowledge the presented findings are the first showing the direct influence of orexins on the IGL activity, mostly through activation of OX2R.
Neuroscience | 2013
Tomasz Blasiak; Marian H. Lewandowski
The intergeniculate leaflet (IGL) of the lateral geniculate body in the rat is a population of GABAergic neurons that can be divided into two, anatomically and neurochemically distinct populations. One population comprises neuropeptide-Y (NPY)-positive neurons that form the geniculohypothalamic tract innervating the suprachiasmatic nuclei (SCN) and the other population comprises enkephalin-positive (ENK) neurons giving rise to the geniculo-geniculate tract innervating the contralateral IGL (cIGL). Previous electrophysiological studies have observed various patterns of firing and different responses to changes in lighting conditions of IGL neurons in vitro and in vivo. The aim of the present study was to determine if these distinct properties could be ascribed to differentially projecting IGL neurons. Neuron activity was recorded extracellularly in the IGL of anaesthetised rats under different lighting conditions (i.e. light/dark). Antidromic activation was used to identify recorded cells as projecting to the SCN or the contralateral IGL. All IGL neurons identified as projecting to the contralateral IGL displayed infra-slow oscillatory activity (ISO; i.e. slow rhythmic bursts of action potentials). ISO of these neurons was sustained in the light and was diminished in the darkness. In contrast, all IGL neurons identified as projecting to the SCN displayed a low level of firing in the light and a majority of these cells increased firing in the darkness. All IGL neurons projecting to the SCN were characterised by an irregular pattern of firing in the light and dark. These data are the first to demonstrate that differentially projecting rat intergeniculate leaflet neurons are characterised by distinct firing patterns and opposite responses to light and dark conditions.
European Journal of Neuroscience | 2013
Anna Blasiak; Tomasz Blasiak; Marian H. Lewandowski; Mohammed Akhter Hossain; John D. Wade; Andrew L. Gundlach
Behavioural state is controlled by a range of neural systems that are sensitive to internal and external stimuli. The relaxin‐3 and relaxin family peptide receptor 3 (RXFP3) system has emerged as a putative ascending arousal network with putative involvement in regulation of stress responses, neuroendocrine control, feeding and metabolism, circadian activity and cognition. Relaxin‐3/γ‐aminobutyric acid neuron populations have been identified in the nucleus incertus, pontine raphe nucleus, periaqueductal grey (PAG) and an area dorsal to the substantia nigra. Relaxin‐3‐positive fibres/terminals densely innervate arousal‐related structures in the brainstem, hypothalamus and limbic forebrain, but the functional significance of the heterogeneous relaxin‐3 neuron distribution and its inputs to specific brain areas are unclear. Therefore, in this study, we used neuronal tract‐tracing and immunofluorescence staining to explore the source of the dense relaxin‐3 innervation of the intergeniculate leaflet (IGL) of the thalamus, a component of the neural circadian timing system. Confocal microscopy analysis revealed that relaxin‐3‐positive neurons retrogradely labelled from the IGL were predominantly present in the PAG and these neurons expressed corticotropin‐releasing factor receptor‐like immunoreactivity. Subsequently, whole‐cell patch‐clamp recordings revealed heterogeneous effects of RXFP3 activation in the IGL by the RXFP3 agonist, relaxin‐3 B‐chain/insulin‐like peptide‐5 A‐chain (R3/I5). Identified, neuropeptide Y‐positive IGL neurons, known to influence suprachiasmatic nucleus activity, were excited by R3/I5, whereas neurons of unidentified neurotransmitter content were either depolarized or displayed a decrease in action potential firing and/or membrane potential hyperpolarization. Our data identify a PAG to IGL relaxin‐3/RXFP3 pathway that might convey stress‐related information to key elements of the circadian system and influence behavioural state rhythmicity.
Behavioural Brain Research | 2003
Tomasz Blasiak; Marian H. Lewandowski
Serotonergic input from midbrain raphe nuclei is believed to have a significant effect on mammalian circadian timing system. The suprachiasmatic nucleus (SCN) receives its serotonergic input from the median raphe nucleus, while the intergeniculate leaflet (IGL) receives serotonergic innervation from the dorsal raphe nucleus (DRN). The present paper was aimed at determining whether projection from the DRN affected rhythmic neuronal oscillations in the IGL of rats. We investigated the impact of electrolytic lesions and electric stimulation of the DRN on spontaneous isoperiodic (i.e. burst firing with a constant interburst interval) neuronal activity recorded in the IGL. In all our experiments a complete lesion of the DRN always caused a significant increase (ca. 100%) of spontaneous activity of IGL neurons, their oscillatory character having been maintained, though. On the other hand, electric stimulation of the DRN produced a transient decrease in firing rate oscillations of the IGL neurons. The obtained results indicate that the neuronal projection from the DRN has a substantial modulating effect on IGL activity-an important element of the mechanism of the circadian time-keeping system that mediates the transfer of non-photic information to the SCN by modulating its activity. The observed increase of isoperiodic activity in the IGL after DRN lesion and a transient decrease in this activity after electric stimulation indicate an inhibitory character of this effect. The present findings corroborate the hypothesis that the DRN is a one of the major and extremely important source of the modulatory inputs to the mammalian circadian time-keeping system.
European Journal of Neuroscience | 2006
Tomasz Blasiak; S. Siejka; Sylvie Raison; Paul Pévet; Marian H. Lewandowski
Electrophysiological studies combined with local neurotoxic lesions were conducted on anaesthetized rats in order to determine whether the dorsal raphe nucleus (DRN) inhibits the intergeniculate leaflet (IGL) of the lateral geniculate nucleus by means of innervation by serotonin‐containing fibres. In the control animals, electrical stimulation of the DRN induced the long‐latency and long‐lasting inhibition of the neuronal firing of the IGL cells that are characterized by rhythmic, slow‐bursting activity in light conditions. The electrical destruction of the DRN resulted in an increase in the firing rate of the recorded IGL cells, whilst at the same time not affecting the rhythmic, bursting pattern of the activity. In the second group of animals, local neurotoxic lesion of serotonergic fibres was performed by injection of the toxin 5,7‐dihydroxytryptamine into the IGL. After 10 days of postoperative recovery, electrophysiological experiments were performed on the toxin‐treated rats. In these animals, electrical stimulation as well as electrical lesion of the DRN did not induce any change in the firing of the slowly bursting cells in the 5,7‐dihydroxytryptamine‐injected IGL. The results obtained provide evidence that inhibition of the IGL slowly bursting cells, by innervation from the dorsal raphe, is mediated by the release of serotonin. Furthermore, the observed serotonergic inhibition of the light‐dependent activity of slowly bursting cells can contribute to the neuronal mechanism gating the information that flows through this nucleus to the vestibular, visuomotor, circadian and sleep/arousal systems, with which the IGL is strongly interconnected.
Neuroscience Letters | 2002
Marian H. Lewandowski; Tomasz Blasiak; Anna Blasiak
We investigated effects of the electrical lesion and/or chemical inactivation of intergeniculate leaflet (IGL) neurons on the ultra-slow isoperiodic neuronal oscillation of the contralaterally located IGL. The spontaneous extracellular activity of neurons, recorded simultaneously in both leaflets of the lateral geniculate nucleus, showed an ultradian oscillatory pattern. In all our experiments, both the electrical lesion and the inactivation of neurons via the blockade of action potential generation did not cause any changes in the neuronal activity pattern in the contralaterally located geniculate leaflet. The obtained results show that a bilateral IGL connection is not necessary for the pattern of neuronal oscillation in the IGL. Hence the functional significance of a reciprocal connection between both lateral geniculate nucleus leaflets is still an open question.
Journal of Neuroscience Methods | 2010
Tomasz Blasiak; Wojciech Czubak; Agata Ignaciak; Marian H. Lewandowski
Stereotaxy is commonly used to implant microelectrodes or microprobes in specific structures of the brain in vivo. In this technique, the positions of the brain nuclei are determined as the distance from a defined reference point on the skull. Thus, it is crucial to correctly locate the reference point. On the rodent skull cap, the principal stereotaxic reference point is called the bregma and is defined as the midpoint of the curve of best fit along the coronal suture. Rough determination of the position of the bregma often results in error. In our experiments we developed and tested an alternative method of locating the bregma point on the skull of mature Wistar rats. In this method, a digital picture of the exposed skull cap is analyzed by a computer. The curve is mathematically fitted to the outline of the coronal suture, and the brain midline is delineated based on the temporal ridges of the skull. The crossing of these two lines is defined as the bregma. Systematic, experimental testing of this new method revealed that, in many cases, the position of the bregma point as located by two different methods (old, rough method and the new one) varied by as much as hundreds of microns. The error in stereotaxic positioning of the microprobe in the brain was significantly decreased when the bregma was determined using the new approach. These results confirm that the new method of locating the stereotaxic reference point improves the precision of in vivo electrode implantation.
Brain Research | 2004
Tomasz Blasiak; Marian H. Lewandowski
The intergeniculate leaflet of the thalamus is, besides the suprachiasmatic nucleus of the hypothalamus, the other important neuronal element of the mammalian biological clock. The extracellularly recorded activity of neurons constituting the intergeniculate leaflet, recorded in vivo, is characterized by distinct, very regular ultradian oscillations. The majority of neurons in the circadian timing system are GABAergic. Many, if not all, neurons of the suprachiasmatic nucleus and intergeniculate leaflet contain GABA. In the present study we examined the effects of the GABA(A) receptor antagonist bicuculline and the chloride channel blocker picrotoxin on isoperiodic neuronal oscillations in the intergeniculate leaflet of rats. We recorded extracellular multiple-unit neuronal activity from the intergeniculate leaflet of anesthetized rats. During the recording of isoperiodic oscillations, bicuculline or picrotoxin were stereotaxically injected at different concentrations into the lateral ventricle of rat brain. In all the experiments, injection of GABA(A) receptor antagonists transiently disrupted the isoperiodic phasic discharge recorded from the intergeniculate leaflet. These data suggest that GABA(A) receptors are involved in the generation of ultradian rhythmical neuronal oscillations in rat intergeniculate leaflet.
The Journal of Physiology | 2017
Alan Kania; Anna Gugula; Agnieszka Grabowiecka; Camila de Ávila; Tomasz Blasiak; Zenon Rajfur; Marian H. Lewandowski; Grzegorz Hess; Elena Timofeeva; Andrew L. Gundlach; Anna Blasiak
Relaxin‐3 is a stress‐responsive neuropeptide that acts at its cognate receptor, RXFP3, to alter behaviours including feeding. In this study, we have demonstrated a direct, RXFP3‐dependent, inhibitory action of relaxin‐3 on oxytocin and vasopressin paraventricular nucleus (PVN) neuron electrical activity, a putative cellular mechanism of orexigenic actions of relaxin‐3. We observed a Gαi/o‐protein‐dependent inhibitory influence of selective RXFP3 activation on PVN neuronal activity in vitro and demonstrated a direct action of RXFP3 activation on oxytocin and vasopressin PVN neurons, confirmed by their abundant expression of RXFP3 mRNA. Moreover, we demonstrated that RXFP3 activation induces a cadmium‐sensitive outward current, which indicates the involvement of a characteristic magnocellular neuron outward potassium current. Furthermore, we identified an abundance of relaxin‐3‐immunoreactive axons/fibres originating from the nucleus incertus in close proximity to the PVN, but associated with sparse relaxin‐3‐containing fibres/terminals within the PVN.