Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomasz Goslinski is active.

Publication


Featured researches published by Tomasz Goslinski.


Drug Discovery Today | 2013

Current status of liposomal porphyrinoid photosensitizers.

Paulina Skupin-Mrugalska; Jaroslaw Piskorz; Tomasz Goslinski; Jadwiga Mielcarek; Krystyna Konopka; Nejat Düzgüneş

The complete eradication of various targets, such as infectious agents or cancer cells, while leaving healthy host cells untouched, is still a great challenge faced in the field of medicine. Photodynamic therapy (PDT) seems to be a promising approach for anticancer treatment, as well as to combat various dermatologic and ophthalmic diseases and microbial infections. The application of liposomes as delivery systems for porphyrinoids has helped overcome many drawbacks of conventional photosensitizers and facilitated the development of novel effective photosensitizers that can be encapsulated in liposomes. The development, preclinical studies and future directions for liposomal delivery of conventional and novel photosensitizers are reviewed.


Journal of Medicinal Chemistry | 2015

Phthalocyanine Derivatives Possessing 2-(Morpholin-4-yl)ethoxy Groups As Potential Agents for Photodynamic Therapy

Malgorzata Kucinska; Paulina Skupin-Mrugalska; Wojciech Szczolko; Lukasz Sobotta; Mateusz Sciepura; Ewa Tykarska; Marcin Wierzchowski; Anna Teubert; Agnieszka Fedoruk-Wyszomirska; Eliza Wyszko; Maria Gdaniec; Mariusz Kaczmarek; Tomasz Goslinski; Jadwiga Mielcarek; Marek Murias

Three 2-(morpholin-4-yl)ethoxy substituted phthalocyanines were synthesized and characterized. Phthalocyanine derivatives revealed moderate to high quantum yields of singlet oxygen production depending on the solvent applied (e.g., in DMF ranging from 0.25 to 0.53). Their photosensitizing potential for photodynamic therapy was investigated in an in vitro model using cancer cell lines. Biological test results were found particularly encouraging for the zinc(II) phthalocyanine derivative possessing two 2-(morpholin-4-yl)ethoxy substituents in nonperipheral positions. Cells irradiated for 20 min at 2 mW/cm(2) revealed the lowest IC50 value at 0.25 μM for prostate cell line (PC3), whereas 1.47 μM was observed for human malignant melanoma (A375) cells. The cytotoxic activity in nonirradiated cells of novel phthalocyanine was found to be very low. Moreover, the cellular uptake, localization, cell cycle, apoptosis through an ELISA assay, and immunochemistry method were investigated in LNCaP cells. Our results showed that the tested photosensitizer possesses very interesting biological activity, depending on experimental conditions.


Journal of Inorganic Biochemistry | 2013

Phthalocyanines functionalized with 2-methyl-5-nitro-1H-imidazolylethoxy and 1,4,7-trioxanonyl moieties and the effect of metronidazole substitution on photocytotoxicity

Marcin Wierzchowski; Lukasz Sobotta; Paulina Skupin-Mrugalska; Justyna Kruk; Weronika Jusiak; Michael Yee; Krystyna Konopka; Nejat Düzgüneş; Ewa Tykarska; Maria Gdaniec; Jadwiga Mielcarek; Tomasz Goslinski

Four novel magnesium(II) and zinc(II) phthalocyanines bearing 1,4,7-trioxanonyl, polyether and/or (2-methyl-5-nitro-1H-imidazol-1-yl)ethoxy, heterocyclic substituents at their non-peripheral positions were synthesized and assessed in terms of physicochemical and biological properties. Magnesium phthalocyanine derivatives bearing polyether substituents (Pc-1), a mixed system of polyether and heterocyclic substituents (Pc-3), and four heterocyclic substituents (Pc-4), respectively, were synthesized following the Linstead macrocyclization reaction procedure. Zinc phthalocyanine (Pc-2) bearing polyether substituents at non-peripheral positions was synthesized following the procedure in n-pentanol with the zinc acetate, and DBU. Novel phthalocyanines were purified by flash column chromatography and characterized using NMR, MS, UV-Vis and HPLC. Moreover, two precursors in macrocyclization reaction phthalonitriles were characterized using X-ray. Photophysical properties of the novel macrocycles were evaluated, including UV-Vis spectra analysis and aggregation study. All macrocycles subjected to singlet oxygen generation and the oxidation rate constant measurements exhibited lower quantum yields of singlet oxygen generation in DMSO than in DMF. In addition, the Pc-2 molecule was found to be the most efficient singlet oxygen generator from the group of macrocycles studied. The photocytotoxicity evaluated on the human oral squamous cell carcinoma cell line, HSC-3, for Pc-3 was significantly higher than that for Pc-1, Pc-2, and Pc-4. Interestingly, Pc-3 was found to be the most active macrocycle in vitro although its ability to generate singlet oxygen was significantly lower than those of Pc-1 and Pc-2. However, attempts to encapsulate phthalocyanines Pc-1-Pc-3 in liposomal membranes were unsuccessful. The phthalocyanine-nitroimidazole conjugate, Pc-4 was encapsulated in phosphatidylglycerol:phosphatidylcholine unilamellar liposomes and subjected to photocytotoxicity study.


Mini-reviews in Medicinal Chemistry | 2015

Photosensitizers Mediated Photodynamic Inactivation Against Virus Particles

Lukasz Sobotta; Paulina Skupin-Mrugalska; Jadwiga Mielcarek; Tomasz Goslinski; Jan Balzarini

Viruses cause many diseases in humans from the rather innocent common cold to more serious or chronic, life-threatening infections. The long-term side effects, sometimes low effectiveness of standard pharmacotherapy and the emergence of drug resistance require a search for new alternative or complementary antiviral therapeutic approaches. One new approach to inactivate microorganisms is photodynamic antimicrobial chemotherapy (PACT). PACT has evolved as a potential method to inactivate viruses. The great challenge for PACT is to develop a methodology enabling the effective inactivation of viruses while leaving the host cells as untouched as possible. This review aims to provide some main directions of antiviral PACT, taking into account different photosensitizers, which have been widely investigated as potential antiviral agents. In addition, several aspects concerning PACT as a tool to assure viral inactivation in human blood products will be addressed.


ChemMedChem | 2014

Diazepinoporphyrazines Containing Peripheral Styryl Substituents and Their Promising Nanomolar Photodynamic Activity against Oral Cancer Cells in Liposomal Formulations

Jaroslaw Piskorz; Krystyna Konopka; Nejat Düzgüneş; Zofia Gdaniec; Jadwiga Mielcarek; Tomasz Goslinski

The photochemical properties and photodynamic activity of three porphyrazines (Pzs) containing annulated diazepine rings, including novel demetalated porphyrazine‐possessing bis(styryl)diazepine moieties were investigated. The porphyrazines were evaluated in terms of their electronic absorption and emission properties, their tendency to undergo aggregation and photodegradation, as well as their singlet oxygen generation efficiency. The in vitro photodynamic activity of the porphyrazines and their liposomal formulations were examined by using two oral squamous cell carcinoma cell lines. Magnesium(II) tribenzodiazepinoporphyrazine (1) revealed the highest phototoxic effect in both cell lines used, H413 and HSC‐3. Encapsulation of Pz 1 into L‐α‐phosphatidyl‐d,l‐glycerol:1‐palmitoyl‐2‐oleoyl‐sn‐glycero‐3‐phosphocholine liposomes resulted in a nearly threefold increase in photocytotoxicity relative to that of the solution of Pz 1 (IC50 values of 45 and 129 nM, respectively).


Journal of Porphyrins and Phthalocyanines | 2009

Synthesis and characterization of periphery-functionalized porphyrazines containing mixed pyrrolyl and pyridylmethylamino groups

Tomasz Goslinski; Ewa Tykarska; Wojciech Szczolko; Tomasz Osmałek; Aleksandra Smigielska; Stanislaw Walorczyk; Hong Zong; Maria Gdaniec; Brian M. Hoffman; Jadwiga Mielcarek; Stanisław Sobiak

The condensation reaction of 2-amino-3-[(3-pyridylmethyl)amino]-2(Z)-butene-1,4-dinitrile with a series of diketones led to novel dinitriles, of which 2-(2,5-dimethyl-1H-pyrrol-1-yl)-3-[methyl(3-pyridylmethylene)amino]-2(Z)-butene-1,4-dinitrile, the product of the Paal-Knorr reaction, was successfully utilized in the Linstead macrocyclization towards symmetrical and unsymmetrical porphyrazines. NMR and X-ray study revealed an almost perpendicular orientation of the pyrrolyl groups in relation to the porphyrazine platform. The newly synthesized macrocycles with different peripheral groups show interesting spectroscopic and electrochemical properties. Due to selective sensor/coordination properties they are expected to find applications as chemical sensors and electronic materials.


Journal of Inorganic Biochemistry | 2017

Antimicrobial and anticancer photodynamic activity of a phthalocyanine photosensitizer with N-methyl morpholiniumethoxy substituents in non-peripheral positions

Jolanta Dlugaszewska; Wojciech Szczolko; Tomasz Koczorowski; Paulina Skupin-Mrugalska; Anna Teubert; Krystyna Konopka; Malgorzata Kucinska; Marek Murias; Nejat Düzgüneş; Jadwiga Mielcarek; Tomasz Goslinski

Photodynamic therapy involves the use of a photosensitizer that is irradiated with visible light in the presence of oxygen, resulting in the formation of reactive oxygen species. A novel phthalocyanine derivative, the quaternary iodide salt of magnesium(II) phthalocyanine with N-methyl morpholiniumethoxy substituents, was synthesized, and characterized. The techniques used included mass spectrometry (MALDI TOF), UV-vis, NMR spectroscopy, and photocytotoxicity against bacteria, fungi and cancer cells. The phthalocyanine derivative possessed typical characteristics of compounds of the phthalocyanine family but the effect of quaternization was observed on the optical properties, especially in terms of absorption efficiency. The results of the photodynamic antimicrobial effect study demonstrated that cationic phthalocyanine possesses excellent photodynamic activity against planktonic cells of both Gram-positive and Gram-negative bacteria. The bactericidal effect was dose-dependent and all bacterial strains tested were killed to a significant degree by irradiated phthalocyanine at a concentration of 1×10-4M. There were no significant differences in the susceptibility of Gram-positive and Gram-negative bacteria to the applied photosensitizer. The photosensitivity of bacteria in the biofilm was lower than that in planktonic form. No correlation was found between the degree of biofilm formation and susceptibility to antimicrobial photodynamic inactivation. The anticancer activity of the novel phthalocyanine derivative was tested using A549 adenocarcinomic alveolar basal epithelial cells and the human oral squamous cell carcinoma cells derived from tongue (HSC3) or buccal mucosa (H413). No significant decrease in cell viability was observed under different conditions or with different formulations of the compound.


Journal of Inorganic Biochemistry | 2016

Photochemical studies and nanomolar photodynamic activities of phthalocyanines functionalized with 1,4,7-trioxanonyl moieties at their non-peripheral positions

Lukasz Sobotta; Marcin Wierzchowski; Michał Mierzwicki; Zofia Gdaniec; Jadwiga Mielcarek; Leentje Persoons; Tomasz Goslinski; Jan Balzarini

Manganese(III), cobalt(II), copper(II), magnesium(II), zinc(II) and metal-free phthalocyanines, possessing 1,4,7-trioxanonyl substituents, at their non-peripheral positions, were subjected to photochemical, photodynamic and biological activity studies. Demetallated phthalocyanine and its metallated d-block analogues, with copper(II), cobalt(II), manganese(III) chloride, were found to be less efficient singlet oxygen generators in comparison to the zinc(II) analogue and zinc(II) phthalocyanine reference. Irradiation of several phthalocyanines for short time periods resulted in a substantially increased cytostatic activity against both suspension (leukemic/lymphoma at 85nM) and solid (cervix carcinoma at 72nM and melanoma at 81nM) tumour cell lines (up to 200-fold). Noteworthy is that enveloped viruses, such as for herpesvirus and influenza A virus, but not, non-enveloped virus strains, such as Coxsackie B4 virus and reovirus-1, exposed to irradiation in the presence of the phthalocyanines, markedly lost their infectivity potential.


New Journal of Chemistry | 2017

Synthesis and singlet oxygen generation of pyrazinoporphyrazines containing dendrimeric aryl substituents

Adam Tillo; Dariusz T. Mlynarczyk; Lukasz Popenda; Barbara Wicher; Michal Kryjewski; Wojciech Szczolko; Stefan Jurga; Jadwiga Mielcarek; Maria Gdaniec; Tomasz Goslinski; Ewa Tykarska

Pyrazinoporphyrazines and tribenzopyrazinoporphyrazines were synthesized and studied towards their potential applications in photodynamic therapy. The macrocycles were obtained via Linstead macrocyclization with good yields. The expansion of the porphyrazine periphery with hyperbranched aryl substituents was beneficial in terms of purification and isolation of compounds, effectively hampering their aggregation tendency in different concentrations. The obtained macrocycles were assessed for their singlet oxygen generation quantum yields and revealed far better efficacies for tribenzopyrazinoporphyrazines than pyrazinoporphyrazines. A comparison of the crystal packing of two 2,3-dicyanopyrazine derivatives revealed that the recurring motif of the supramolecular architecture is a dimer formed by π–π stacking interactions between aromatic pyrazine and phenyl rings of the inversion center related molecules.


Current Issues in Pharmacy and Medical Sciences | 2016

Glycyrrhetinic acid and its derivatives in infectious diseases

Dominik Langer; Beata Czarczynska-Goslinska; Tomasz Goslinski

Abstract Introduction. Licorice or liquorice (Glycyrrhiza glabra, Leguminosae) is a perennial plant naturally occurring or cultivated in Europe and Asia. It was appreciated by many ancient cultures, and was employed within Arabic medicine and (beginning in the Middle Ages) in Europe folk medicine as a remedy for many diseases. Currently, the sweet flavoured root of this plant – Radix Glycyrrhizae (Liquirtiae), is widely taken for the treating of various upper respiratory tract diseases, as well as for gastric ulcer disease. It is also utilized as a sweetening and flavouring agent in the food, tobacco and pharmacy industries. The main active ingredient of liquorice is the triterpenoid saponin, glycyrrhizin, which is a mixture of calcium, magnesium and potassium salts of glycyrrhizic acid (GA). Glycyrrhizic acid is composed of an aglycone, that is 18β-glycyrrhetinic acid (GE), and a D-glucuronic acid dimer. The aim of this review is to discuss some aspects of the activity of glycyrrhetinic acid and its derivatives in infectious diseases. State of knowledge. The pentacyclic system of glycyrrhetinic acid consists of condensed six-membered rings with a hydroxyl group at C-3, a carboxyl moiety at C-30 and a ketone functional group at C-11. Considering the presence of the above mentioned functional groups, many structural transformations have been proposed, including those by way of esterification, alkylation and reduction reactions. The introduction of various chemical residues into its structure, as well as the modification of the glycyrrhetinic acid in its pentacyclic triterpene skeleton, has led to the generation of compounds with many valuable antimicrobial, anti-parasitic, antiviral properties and modified lipophilic parameters. Summary. In summary, glycyrrhetinic acid derivatives appear to have promise as active pharmaceutical ingredients that contain a wide range of biological and pharmacological properties.

Collaboration


Dive into the Tomasz Goslinski's collaboration.

Top Co-Authors

Avatar

Jadwiga Mielcarek

Poznan University of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Lukasz Sobotta

Poznan University of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Ewa Tykarska

Poznan University of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Maria Gdaniec

Adam Mickiewicz University in Poznań

View shared research outputs
Top Co-Authors

Avatar

Wojciech Szczolko

Poznan University of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Jaroslaw Piskorz

Poznan University of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Lukasz Popenda

Adam Mickiewicz University in Poznań

View shared research outputs
Top Co-Authors

Avatar

Stefan Jurga

Adam Mickiewicz University in Poznań

View shared research outputs
Top Co-Authors

Avatar

Sebastian Lijewski

Poznan University of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Michal Kryjewski

Poznan University of Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge