Tomasz Grygorowicz
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tomasz Grygorowicz.
Neurochemistry International | 2010
Tomasz Grygorowicz; Lidia Strużyńska; Grzegorz Sulkowski; Małgorzata Chalimoniuk; Dorota Sulejczak
Purinergic P2X(7) receptors are nucleotide-gated ion channels widely distributed in brain. Strong evidence suggests that they are involved in cross-talk between glial and neuronal cells. These receptors activated under pathological conditions may participate in regulation of inflammatory response and cell death. In this study we show the expression of P2X(7) protein and mRNA during the course of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), in different stages of the disease (4, 6, 8, 10 post-immunization). The enhanced expression of the receptor at the level of both mRNA and protein was observed in the peak of neurological symptoms and was connected mostly with neurons. However, early overexpression of receptor protein was observed also in an asymptomatic phase of EAE and was tightly related to astrocytic pool of cells. This suggests the early involvement of this kind of receptor into pathological mechanisms leading for symptoms characteristic for EAE.
Molecular and Cellular Neuroscience | 2016
Tomasz Grygorowicz; Marlena Wełniak-Kamińska; Lidia Strużyńska
Astrocytes are the main cells responsible for maintenance of brain homeostasis. Undisturbed action and signaling with other cells are crucial for proper functioning of the central nervous system (CNS). Dysfunctional astrocytes may determine the degree of neuronal injury and are associated with several brain pathologies, among which are multiple sclerosis (MS) and the animal model of this disease which is known as experimental autoimmune encephalomyelitis (EAE). One of the many functions of astrocytes is their response to CNS damage when they undergo reactive gliosis. Our data reveal that activation of astrocytes occurs in forebrains of immunized rats at a very early stage of EAE, well before the symptomatic phase of the disease. We have noted enhanced expression of GFAP and S100β starting from day 4 post-immunization. Temporal coincidence between the expression of astrocyte activation markers and the expression of connexin 43 and purinergic P2X7 receptor (P2X7R) was also observed. Administration of Brilliant blue G, an antagonist of P2X7R, significantly decreases astrogliosis as confirmed by immunohistochemical analysis and observation of decreased levels of GFAP and S100β. The condition of the treated animals was improved and the neurological symptoms of the disease were alleviated. With the knowledge that cerebral astroglia represent the main source of ATP and glutamate which are potentially neurotoxic substances released through P2X7R and connexin hemichannels, we suggest that astroglia may be involved in pathogenesis of MS/EAE at a very early stage through the purinergic/glutamatergic mechanisms.
Environmental Toxicology | 2013
Witold Strużyński; Beata Dąbrowska-Bouta; Tomasz Grygorowicz; E Zieminska; Lidia Strużyńska
Silver nanoparticles, chemically neutral particles in the size range of 1–100 nm, express strong antimicrobial activity and therefore have a broad range of applications. The increased use of consumer products with nanosilver (nanoAg) may result in its release into the environment, and may particularly affect aquatic systems. The mechanisms of the harmful effects of nanoAg against aquatic organisms are unclear. Therefore, in the present study we investigate the pro‐oxidative potential of these nanoparticles in experimentally exposed crayfish Orconectes limosus. Markers of oxidative stress and parameters of the antioxidant cell defense system such as total glutathione, glutathione reductase and the level of sulfhydryl groups were examined in the hepatopancreas of both sexes of O. limosus collected seasonally from Białe Lake (Poland) and subsequently exposed to nanoAg particles for 2 weeks. Exposure to nanoAg led to a high concentration‐dependent increase in the rate of lipid peroxidation and a decrease of protein‐bound SH groups which indicates protein oxidation. These markers of oxidative stress were accompanied by decreased levels of thiols and reduced activity of glutathione reductase. These results indicate a deficiency of reduced glutathione and suggest that the exposed organisms have less efficient antioxidative mechanisms available to counter ROS‐mediated cellular stress. Furthermore, we find that confocal microscopy is of limited utility in monitoring the presence of silver nanoparticles in tissues of exposed crayfish.
Purinergic Signalling | 2018
Tomasz Grygorowicz; Beata Dąbrowska-Bouta; Lidia Strużyńska
Purinergic P2X receptors, when activated under pathological conditions, participate in induction of the inflammatory response and/or cell death. Both neuroinflammation and neurodegeneration represent hallmarks of multiple sclerosis (MS), an autoimmune disease of the central nervous system. In the current study, we examined whether P2X7R is expressed in brain microvasculature of rats subjected to experimental autoimmune encephalomyelitis (EAE) and explore possible relationships with blood-brain barrier (BBB) protein—claudin-5 after administration of P2X7R antagonist—Brilliant Blue G (BBG). Capillary fraction isolated from control and EAE rat brains was subjected to immunohistochemical and Western blot analyses. We document the presence of P2X7R in brain capillaries isolated from brain tissue of EAE rats. P2X7R is found to be localized on the abluminal surface of the microvessels and is co-expressed with PDGFβR, a marker of pericytes. We also show over-expression of this receptor in isolated capillaries during the course of EAE, which is temporally correlated with a lower protein level of PDGFβR, as well as claudin-5, a tight junction-building protein. Administration of a P2X7R antagonist to the immunized rats significantly reduced clinical signs of EAE and enhances protein expression of both claudin-5 and PDGFβR. These results indicate that P2X7 receptor located on pericytes may contribute to pathological mechanisms operated during EAE in cerebral microvessels influencing the BBB integrity.
Inflammopharmacology | 2018
Tomasz Grygorowicz; Lidia Strużyńska
Microglia-mediated neuroinflammation accompanies many central nervous system (CNS) diseases, including multiple sclerosis (MS), and is strongly dependent on the purinergic P2X7 receptor. The nature of the inflammatory response in MS is studied for decades indicating, that proinflammatory microgliosis is involved in advanced stages of MS and is associated with active tissue damage and neurological dysfunctions. Evidence on the role of microgliosis in initial stages of the disease is scarce. Thus, in the present study, we investigated the time course of microglial activation in rat brain subjected to experimental autoimmune encephalomyelitis (EAE) which is the animal model of MS. We show that activation of microglia occurs in brains of immunized rats at a very early stage of EAE, well before the development of neurological symptoms of the disease. Enhanced immunoreactivity of microglia/macrophage-specific protein Iba-1, together with morphological features of microgliosis, was identified beginning at day 4 post immunization. Concomitantly, microglial expression of P2X7R was also examined. Moreover, our results reveal that administration of Brilliant Blue G, an antagonist of P2X7R, delays the onset of the disease and partially inhibits development of neurological symptoms in EAE rats. Blockage of P2X7R significantly reduces activation of microglia as confirmed by decreased Iba-1 immunoreactivity and suppresses neuroinflammation in EAE rat brains, as indicated by decreased protein levels of investigated proinflammatory cytokines: IL-1β, IL-6 and TNF-α. Our results indicate that microglia are involved in inducing neuroinflammation at a very early stage of MS/EAE via a P2X7R-dependent mechanism.
Acta Neurobiologiae Experimentalis | 2011
Tomasz Grygorowicz; Dorota Sulejczak; Lidia Strużyńska
Journal of Cerebral Blood Flow and Metabolism | 2018
Anna Andrzejewska; Adam Nowakowski; Tomasz Grygorowicz; Sylwia Dabrowska; Jarosław Orzeł; Piotr Walczak; Barbara Lukomska; Miroslaw Janowski
Acta Neurobiologiae Experimentalis | 2015
Tomasz Grygorowicz; Marlena Wełniak-Kamińska; A Lenkiewicz; Lidia Strużyńska
Acta Neurobiologiae Experimentalis | 2015
K Podsiadlo; Tomasz Grygorowicz; Lidia Strużyńska
Acta Neurobiologiae Experimentalis | 2013
Tomasz Grygorowicz; J Rafalowska; A Lenkiewicz; H Chrzanowska; R Wojda; R Szopinski; Lidia Strużyńska