Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomasz J. Antosiewicz is active.

Publication


Featured researches published by Tomasz J. Antosiewicz.


Physical Review Letters | 2015

Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions

Gülis Zengin; Martin Wersäll; Sara Nilsson; Tomasz J. Antosiewicz; Mikael Käll; Timur Shegai

Realizing strong light-matter interactions between individual two-level systems and resonating cavities in atomic and solid state systems opens up possibilities to study optical nonlinearities on a single-photon level, which can be useful for future quantum information processing networks. However, these efforts have been hampered by unfavorable experimental conditions, such as cryogenic temperatures and ultrahigh vacuum, required to study such systems and phenomena. Although several attempts to realize strong light-matter interactions at room temperature using plasmon resonances have been made, successful realizations on the single-nanoparticle level are still lacking. Here, we demonstrate the strong coupling between plasmons confined within a single silver nanoprism and excitons in molecular J aggregates at ambient conditions. Our findings show that deep subwavelength mode volumes V together with quality factors Q that are reasonably high for plasmonic nanostructures result in a strong-coupling figure of merit-Q/sqrt[V] as high as ∼6×10^{3}  μm^{-3/2}, a value comparable to state-of-the-art photonic crystal and microring resonator cavities. This suggests that plasmonic nanocavities, and specifically silver nanoprisms, can be used for room temperature quantum optics.


Scientific Reports | 2013

Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates.

Gülis Zengin; Göran Johansson; Peter Johansson; Tomasz J. Antosiewicz; Mikael Käll; Timur Shegai

We studied scattering and extinction of individual silver nanorods coupled to the J-aggregate form of the cyanine dye TDBC as a function of plasmon – exciton detuning. The measured single particle spectra exhibited a strongly suppressed scattering and extinction rate at wavelengths corresponding to the J-aggregate absorption band, signaling strong interaction between the localized surface plasmon of the metal core and the exciton of the surrounding molecular shell. In the context of strong coupling theory, the observed “transparency dips” correspond to an average vacuum Rabi splitting of the order of 100 meV, which approaches the plasmon dephasing rate and, thereby, the strong coupling limit for the smallest investigated particles. These findings could pave the way towards ultra-strong light-matter interaction on the nanoscale and active plasmonic devices operating at room temperature.


New Journal of Physics | 2013

Competition between surface screening and size quantization for surface plasmons in nanoparticles

R. Carmina Monreal; Tomasz J. Antosiewicz; S. Peter Apell

We present a theoretical model for analyzing the size dependence of the surface plasmon resonance of metallic nanospheres in a range of sizes down to a single nanometer. Within this model, we explicitly show how different microscopic mechanisms, namely quantization due to size (quantum size effect (QSE)) and dynamical surface screening, affect the energy of the surface plasmon. We demonstrate that the latter mechanism, which can move the surface plasma energy both toward the red or the blue, can be comparable to or even stronger than QSE. Thus, depending on material parameters, QSE may only be observed for ultra-small metal nanoparticles much closer to 1 nm in size than to 10 nm. Results presented herein are in quantitative agreement with recent published experimental results for Ag and Au.We develop a theoretical model of the surface plasmon resonance of metallic nanospheres in the size range down to the single nanometer size. Within this model we explicitly show how different microscopic mechanisms, namely quantization due to size (QSE) and electron spill-out, affect the energy of the surface plasmon. We demonstrate, that electron spill-out effects, which can move the surface plasma energy both toward the red or the blue, can be comparable to or even stronger than QSE. Thus, depending on circumstances, QSE may only be observed for ultrasmall metal nanoparticles much closer to 1 nm in size than to 10 nm. Results presented herein are in quantitative agreement with recent published experimental results for Ag and Au.


Nature Materials | 2015

Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape

Svetlana Syrenova; Carl Wadell; Ferry A. A. Nugroho; Tina Gschneidtner; Yuri Diaz Fernandez; Giammarco Nalin; Dominika Świtlik; Fredrik Westerlund; Tomasz J. Antosiewicz; Vladimir P. Zhdanov; Kasper Moth-Poulsen; Christoph Langhammer

Physicochemical properties of nanoparticles may depend on their size and shape and are traditionally assessed in ensemble-level experiments, which accordingly may be plagued by averaging effects. These effects can be eliminated in single-nanoparticle experiments. Using plasmonic nanospectroscopy, we present a comprehensive study of hydride formation thermodynamics in individual Pd nanocrystals of different size and shape, and find corresponding enthalpies and entropies to be nearly size- and shape-independent. The hysteresis observed is significantly wider than in bulk, with details depending on the specifics of individual nanoparticles. Generally, the absorption branch of the hysteresis loop is size-dependent in the sub-30 nm regime, whereas desorption is size- and shape-independent. The former is consistent with a coherent phase transition during hydride formation, influenced kinetically by the specifics of nucleation, whereas the latter implies that hydride decomposition either occurs incoherently or via different kinetic pathways.


Physical Chemistry Chemical Physics | 2013

On the mechanism for nanoplasmonic enhancement of photon to electron conversion in nanoparticle sensitized hematite films

Beniamino Iandolo; Tomasz J. Antosiewicz; Anders Hellman; Igor Zoric

Hematite (Fe2O3) is a promising candidate for hydrogen production via water splitting despite the difference in the characteristic lengths for photon absorption and charge carrier transport. Metallic nanoparticles supporting localized surface plasmon resonances (LSPRs), i.e. collective, non-propagating oscillations of electrons excited by an external electric field, are well-suited to improve the optoelectronic properties of hematite, in particular for ultra-thin films. Several mechanisms have been proposed to explain the observed LSPR mediated performance enhancement. In this work, the improvement of incident photon-to-electron conversion efficiency (IPCE) of ultra-thin hematite photoanodes functionalized with Au nanodisks was investigated. The improvement in IPCE at wavelengths close to the bandgap in hematite was found to correlate well with the increase in optical extinction owing to the excitation of LSPR in the nanodisks. Finite-difference time-domain calculations of the near-field distribution around the nanodisks enabled us to elucidate the mechanism behind the IPCE enhancement and its variations with the position of the plasmonic resonance with respect to the bandgap of hematite. Both were attributed to an increased charge generation close to the hematite-electrolyte interface caused by the electric field enhancement in hematite. The results presented here are directly applicable to other semiconductors with similar properties to hematite and are expected to be helpful in future design of optimized photoanodes, where, for instance, functionalization with metallic nanoparticles is combined with material doping and nanostructuring.


ACS Nano | 2013

Plasmon-enhanced enzyme-linked immunosorbent assay on large arrays of individual particles made by electron beam lithography.

Si Chen; Mikael Svedendahl; Tomasz J. Antosiewicz; Mikael Käll

Ultrasensitive biosensing is one of the main driving forces behind the dynamic research field of plasmonics. We have previously demonstrated that the sensitivity of single nanoparticle plasmon spectroscopy can be greatly enhanced by enzymatic amplification of the refractive index footprint of individual protein molecules, so-called plasmon-enhanced enzyme-linked immunosorbent assay (ELISA). The technique, which is based on generation of an optically dense precipitate catalyzed by horseradish peroxidase at the metal surface, allowed for colorimetric analysis of ultralow molecular surface coverages with a limit of detection approaching the single molecule limit. However, the plasmonic response induced by a single enzyme can be expected to vary for a number of reasons, including inhomogeneous broadening of the sensing properties of individual particles, variation in electric field enhancement over the surface of a single particle and variation in size and morphology of the enzymatic precipitate. In this report, we discuss how such inhomogeneities affect the possibility to quantify the number of molecules bound to a single nanoparticle. The discussion is based on simulations and measurements of large arrays of well-separated gold nanoparticles fabricated by electron beam lithography (EBL). The new data confirms the intrinsic single-molecule sensitivity of the technique but we were not able to clearly resolve the exact number of adsorbed molecules per single particle. The results indicate that the main sources of uncertainty come from variations in sensitivity across the surface of individual particles and between different particles. There is also a considerable uncertainty in the actual precipitate morphology produced by individual enzyme molecules. Possible routes toward further improvements of the methodology are discussed.


Plasmonics | 2011

Performance of Scanning Near-Field Optical Microscope Probes with Single Groove and Various Metal Coatings

Tomasz J. Antosiewicz; Piotr Wróbel; Tomasz Szoplik

We investigate the performance of a simple corrugated aperture scanning near-field optical microscope (SNOM) probe with various cladding metals. The probes have only one corrugation, however, they offer increased transmission over both uncorrugated probes and those with many grooves. Enhancement of light throughput results from excitation of surface plasmons at the corrugation at the core–cladding interface. We show how the choice of metal influences radiation properties of grooved probes.


Nano Letters | 2017

Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons

Martin Wersäll; Jorge Cuadra; Tomasz J. Antosiewicz; Sinan Balci; Timur Shegai

Plasmon-exciton interactions are important for many prominent spectroscopic applications such as surface-enhanced Raman scattering, plasmon-mediated fluorescence, nanoscale lasing, and strong coupling. The case of strong coupling is analogous to quantum optical effects studied in solid state and atomic systems previously. In plasmonics, similar observations have been almost exclusively made in elastic scattering experiments; however, the interpretation of these experiments is often cumbersome. Here, we demonstrate mode splitting not only in scattering, but also in photoluminescence of individual hybrid nanosystems, which manifests a direct proof of strong coupling in plasmon-exciton nanoparticles. We achieved these results due to saturation of the mode volume with molecular J-aggregates, which resulted in splitting up to 400 meV, that is, ∼20% of the resonance energy. We analyzed the correlation between scattering and photoluminescence and found that splitting in photoluminescence is considerably less than that in scattering. Moreover, we found that splitting in both photoluminescence and scattering signals increased upon cooling to cryogenic temperatures. These findings improve our understanding of strong coupling phenomena in plasmonics.


Journal of The Optical Society of America A-optics Image Science and Vision | 2011

Two-dimensional point spread matrix of layered metal–dielectric imaging elements

Rafal Kotynski; Tomasz J. Antosiewicz; Karol Król; Krassimir Panajotov

We describe the change of the spatial distribution of the state of polarization occurring during two-dimensional (2D) imaging through a multilayer and in particular through a layered metallic flat lens. Linear or circular polarization of incident light is not preserved due to the difference in the amplitude transfer functions for the TM and TE polarizations. In effect, the transfer function and the point spread function (PSF) that characterize 2D imaging through a multilayer both have a matrix form, and cross-polarization coupling is observed for spatially modulated beams with a linear or circular incident polarization. The PSF in a matrix form is used to characterize the resolution of the superlens for different polarization states. We demonstrate how the 2D PSF may be used to design a simple diffractive nanoelement consisting of two radial slits. The structure assures the separation of nondiffracting radial beams originating from two slits in the mask and exhibits an interesting property of a backward power flow in between the two rings.


Opto-electronics Review | 2006

Energy transport in plasmon waveguides on chains of metal nanoplates

W. M. Saj; Tomasz J. Antosiewicz; Jacek Pniewski; Tomasz Szoplik

An interest in energy transport in 3D chains of metal nanoparticles is oriented towards future applications in nanoscale optical devices. We consider plasmonic waveguides composed of silver nanoplates arranged in several geometries to find the one with the lowest attenuation. We investigate light propagation of 500-nm wavelength along different chains of silver nanoplates of subwavelength length and width and wavelength-size height. Energy transmission of the waveguides is analysed in the range of 400–2000 nm. We find that chain of short parallel nanoplates guides energy better than two electromagnetically coupled continuous stripes and all other considered nonparallel structures. In a wavelength range of 500–600 nm, this 2-μm long 3D waveguide transmits 39% of incident energy in a channel of λ × λ/2 cross section area.

Collaboration


Dive into the Tomasz J. Antosiewicz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Langhammer

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

S. Peter Apell

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Mikael Käll

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Timur Shegai

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Wersäll

Chalmers University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge