Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomasz Jagielski is active.

Publication


Featured researches published by Tomasz Jagielski.


European Respiratory Journal | 2013

The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study

Wouter Hoefsloot; Jakko van Ingen; Claire Andrejak; Kristian Ängeby; Rosine Bauriaud; Pascale Bemer; Natalie Beylis; Martin J. Boeree; Juana Cacho; Violet Chihota; Erica Chimara; Gavin Churchyard; Raquel Cias; Rosa Daza; Charles L. Daley; P. N. Richard Dekhuijzen; Diego Domingo; Francis Drobniewski; Jaime Esteban; Maryse Fauville-Dufaux; Dorte Bek Folkvardsen; Noel Gibbons; Enrique Gómez-Mampaso; Rosa Gonzalez; Harald Hoffmann; Po-Ren Hsueh; Alexander Indra; Tomasz Jagielski; Frances Jamieson; Mateja Janković

A significant knowledge gap exists concerning the geographical distribution of nontuberculous mycobacteria (NTM) isolation worldwide. To provide a snapshot of NTM species distribution, global partners in the NTM-Network European Trials Group (NET) framework (www.ntm-net.org), a branch of the Tuberculosis Network European Trials Group (TB-NET), provided identification results of the total number of patients in 2008 in whom NTM were isolated from pulmonary samples. From these data, we visualised the relative distribution of the different NTM found per continent and per country. We received species identification data for 20 182 patients, from 62 laboratories in 30 countries across six continents. 91 different NTM species were isolated. Mycobacterium avium complex (MAC) bacteria predominated in most countries, followed by M. gordonae and M. xenopi. Important differences in geographical distribution of MAC species as well as M. xenopi, M. kansasii and rapid-growing mycobacteria were observed. This snapshot demonstrates that the species distribution among NTM isolates from pulmonary specimens in the year 2008 differed by continent and differed by country within these continents. These differences in species distribution may partly determine the frequency and manifestations of pulmonary NTM disease in each geographical location. Species distribution among nontuberculous mycobacteria isolates from pulmonary specimens is geographically diverse http://ow.ly/npu6r


BioMed Research International | 2014

Current Methods in the Molecular Typing of Mycobacterium tuberculosis and Other Mycobacteria

Tomasz Jagielski; Jakko van Ingen; Nalin Rastogi; Jaroslaw Dziadek; Pawel K. Mazur; Jacek Bielecki

In the epidemiology of tuberculosis (TB) and nontuberculous mycobacterial (NTM) diseases, as in all infectious diseases, the key issue is to define the source of infection and to disclose its routes of transmission and dissemination in the environment. For this to be accomplished, the ability of discerning and tracking individual Mycobacterium strains is of critical importance. Molecular typing methods have greatly improved our understanding of the biology of mycobacteria and provide powerful tools to combat the diseases caused by these pathogens. The utility of various typing methods depends on the Mycobacterium species under investigation as well as on the research question. For tuberculosis, different methods have different roles in phylogenetic analyses and person-to-person transmission studies. In NTM diseases, most investigations involve the search for environmental sources or phylogenetic relationships. Here, too, the type of setting determines which methodology is most suitable. Within this review, we summarize currently available molecular methods for strain typing of M. tuberculosis and some NTM species, most commonly associated with human disease. For the various methods, technical practicalities as well as discriminatory power and accomplishments are reviewed.


Clinical Microbiology Reviews | 2016

Methodological and Clinical Aspects of the Molecular Epidemiology of Mycobacterium tuberculosis and Other Mycobacteria

Tomasz Jagielski; Alina Minias; Jakko van Ingen; Nalin Rastogi; Anna Brzostek; Anna Żaczek; Jaroslaw Dziadek

SUMMARY Molecular typing has revolutionized epidemiological studies of infectious diseases, including those of a mycobacterial etiology. With the advent of fingerprinting techniques, many traditional concepts regarding transmission, infectivity, or pathogenicity of mycobacterial bacilli have been revisited, and their conventional interpretations have been challenged. Since the mid-1990s, when the first typing methods were introduced, a plethora of other modalities have been proposed. So-called molecular epidemiology has become an essential subdiscipline of modern mycobacteriology. It serves as a resource for understanding the key issues in the epidemiology of tuberculosis and other mycobacterial diseases. Among these issues are disclosing sources of infection, quantifying recent transmission, identifying transmission links, discerning reinfection from relapse, tracking the geographic distribution and clonal expansion of specific strains, and exploring the genetic mechanisms underlying specific phenotypic traits, including virulence, organ tropism, transmissibility, or drug resistance. Since genotyping continues to unravel the biology of mycobacteria, it offers enormous promise in the fight against and prevention of the diseases caused by these pathogens. In this review, molecular typing methods for Mycobacterium tuberculosis and nontuberculous mycobacteria elaborated over the last 2 decades are summarized. The relevance of these methods to the epidemiological investigation, diagnosis, evolution, and control of mycobacterial diseases is discussed.


BMC Dermatology | 2014

Distribution of Malassezia species on the skin of patients with atopic dermatitis, psoriasis, and healthy volunteers assessed by conventional and molecular identification methods

Tomasz Jagielski; Elżbieta Rup; Aleksandra Ziółkowska; Katarzyna Roeske; Anna B. Macura; Jacek Bielecki

BackgroundThe Malassezia yeasts which belong to the physiological microflora of human skin have also been implicated in several dermatological disorders, including pityriasis versicolor (PV), atopic dermatitis (AD), and psoriasis (PS). The Malassezia genus has repeatedly been revised and it now accommodates 14 species, all but one being lipid-dependent species. The traditional, phenotype-based identification schemes of Malassezia species are fraught with interpretative ambiguities and inconsistencies, and are thus increasingly being supplemented or replaced by DNA typing methods. The aim of this study was to explore the species composition of Malassezia microflora on the skin of healthy volunteers and patients with AD and PS.MethodsSpecies characterization was performed by conventional, culture-based methods and subsequently molecular techniques: PCR-RFLP and sequencing of the internal transcribed spacer (ITS) 1/2 regions and the D1/D2 domains of the 26S rRNA gene. The Chi-square test and Fisher’s exact test were used for statistical analysis.ResultsMalassezia sympodialis was the predominant species, having been cultured from 29 (82.9%) skin samples collected from 17 out of 18 subjects under the study. Whereas AD patients yielded exclusively M. sympodialis isolates, M. furfur isolates were observed only in PS patients. The isolation of M. sympodialis was statistically more frequent among AD patients and healthy volunteers than among PS patients (P < 0.03). Whether this mirrors any predilection of particular Malassezia species for certain clinical conditions needs to be further evaluated. The overall concordance between phenotypic and molecular methods was quite high (65%), with the discordant results being rather due to the presence of multiple species in a single culture (co-colonization) than true misidentification. All Malassezia isolates were susceptible to cyclopiroxolamine and azole drugs, with M. furfur isolates being somewhat more drug tolerant than other Malassezi a species.ConclusionsThis study provides an important insight into the species composition of Malassezia microbiota in human skin. The predominance of M. sympodialis in both normal and pathologic skin, contrasts with other European countries, reporting M. globosa and M. restricta as the most frequently isolated Malassezia species.


PLOS ONE | 2014

Screening for Streptomycin Resistance-Conferring Mutations in Mycobacterium tuberculosis Clinical Isolates from Poland

Tomasz Jagielski; Helena Ignatowska; Zofia Bakuła; Łukasz Dziewit; Agnieszka Napiórkowska; Ewa Augustynowicz-Kopeć; Zofia Zwolska; Jacek Bielecki

Currently, mutations in three genes, namely rrs, rpsL, and gidB, encoding 16S rRNA, ribosomal protein S12, and 16S rRNA-specific methyltransferase, respectively, are considered to be involved in conferring resistance to streptomycin (STR) in Mycobacterium tuberculosis. The aim of this study was to investigate the spectrum and frequency of these mutations in M. tuberculosis clinical isolates, both resistant and susceptible to STR. Sixty-four M. tuberculosis isolates recovered from as many TB patients from Poland in 2004 were included in the study. Within the sample were 50 multidrug-resistant (32 STR-resistant and 18 STR-susceptible) and 14 pan-susceptible isolates. Preliminary testing for STR resistance was performed with the 1% proportion method. The MICs of STR were determined by the Etest method. Mutation profiling was carried out by amplifying and sequencing the entire rrs, rpsL, and gidB genes. Non-synonymous mutations in either rrs or rpsL gene were detected in 23 (71.9%) of the STR-resistant and none of the STR-susceptible isolates. Mutations in the gidB gene were distributed among 12 (37.5%) STR-resistant and 13 (40.6%) STR-susceptible isolates. Four (12.5%) STR-resistant isolates were wild-type at all three loci examined. None of the rrs, rpsL or gidB mutations could be linked to low, intermediate or high level of STR resistance. In accordance with previous findings, the gidB 47T→G (L16R) mutation was associated with the Latin American-Mediterranean genotype family, whereas 276A→C (E92D) and 615A→G (A205A) mutations of the gidB gene were associated with the Beijing lineage. The study underlines the usefulness of rrs and rpsL mutations as molecular markers for STR resistance yet not indicative of its level. The gidB polymorphisms can serve as phylogenetic markers.


Medical Mycology | 2012

Epidemiological analysis of worldwide bovine, canine and human clinical Prototheca isolates by PCR genotyping and MALDI-TOF mass spectrometry proteomic phenotyping.

Jennifer Ahrholdt; Jayaseelan Murugaiyan; Reinhard K. Straubinger; Tomasz Jagielski; Uwe Roesler

This study presents information on the phenotypic and genotypic characterization of clinical Prototheca spp. isolates obtained from different geographic regions. Of 350 isolates studied, 342 came from cattle, six from canines and two from humans. Phenotypic characterization was carried out by a matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) proteomic analysis. The peptide extraction that was used for this analysis included the additional steps of washing and sonication to increase the yield of peptide. Genotypic analysis was conducted using species- and genotype-specific primers. The study revealed that among the cattle isolates, 310 (90.6%) belonged to Prototheca zopfii genotype 2, 30 (8.8%) to P. blaschkeae, and two (0.6%) to P. zopfii genotype 1. P. zopfii genotype 2 is the principal etiological agent of protothecal mastitis in cattle regardless of the geographic region. Similarly, all canine and human isolates also belonged to the P. zopfii genotype 2, suggesting that this is probably the most virulent species of the genus. The role of P. blaschkeae needs further epidemiologic studies to ascertain its etiologic role in bovine mastitis. To the best of our knowledge, this is the first comprehensive study on phenotypic and genotypic characterization of P. zopfii and P. blaschkeae isolates originating from diverse clinical specimens from different countries.


Journal of Antimicrobial Chemotherapy | 2014

Detection of mutations associated with isoniazid resistance in multidrug-resistant Mycobacterium tuberculosis clinical isolates

Tomasz Jagielski; Zofia Bakuła; Katarzyna Roeske; Michał Kamiński; Agnieszka Napiórkowska; Ewa Augustynowicz-Kopeć; Zofia Zwolska; Jacek Bielecki

OBJECTIVES To determine the prevalence of isoniazid resistance-conferring mutations among multidrug-resistant (MDR) isolates of Mycobacterium tuberculosis from Poland. METHODS Nine genetic loci, including structural genes (katG, inhA, ahpC, kasA, ndh, nat and mshA) and regulatory regions (i.e. the mabA-inhA promoter and oxyR-ahpC intergenic region) of 50 MDR M. tuberculosis isolates collected throughout Poland were PCR-amplified in their entirety and screened for mutations by direct sequencing methodology. RESULTS Forty-six (92%) MDR M. tuberculosis isolates had mutations in the katG gene, and the katG Ser315Thr substitution predominated (72%). Eight (16%) isolates (six with a mutated katG allele) had mutations in the inhA promoter region and two such isolates also had single inhA structural gene mutations. Mutations in the oxyR-ahpC locus were found in five (10%) isolates, of which all but one had at least one additional mutation in katG. Mutations in the remaining genetic loci (kasA, ndh, nat and mshA) were detected in 12 (24%), 4 (8%), 5 (10%) and 17 (34%) MDR isolates, respectively. All non-synonymous mutants for these genes harboured mutations in katG. One isolate had no mutations in any of the analysed loci. CONCLUSIONS This study accentuates the usefulness of katG and inhA promoter mutations as predictive markers of isoniazid resistance. Testing only for katG 315 and inhA -15 mutations would detect isoniazid resistance in 84% of the MDR M. tuberculosis sample. This percentage would increase to 96% if the sequence analysis was extended to the entire katG gene. Analysis of the remaining genetic loci did not contribute greatly to the identification of isoniazid resistance.


Journal of Clinical Microbiology | 2010

Spoligotype-Based Comparative Population Structure Analysis of Multidrug-Resistant and Isoniazid-Monoresistant Mycobacterium tuberculosis Complex Clinical Isolates in Poland

Tomasz Jagielski; Ewa Augustynowicz-Kopeć; Thierry Zozio; Nalin Rastogi; Zofia Zwolska

ABSTRACT The spoligotyping-based population structure of multidrug-resistant (MDR) Mycobacterium tuberculosis strains isolated in Poland (n = 46), representing all culture-positive MDR tuberculosis (MDR-TB) cases, was compared to that of isoniazid (INH)-monoresistant strains (n = 71) isolated in 2004. The latter data set from a previous study (E. Augustynowicz-Kopeć, T. Jagielski, and Z. Zwolska, J. Clin. Microbiol. 2008, 46:4041-4044) represented 87% of all INH-monoresistant strains. The clustering rates and genotypic-diversity indexes for the 2 subpopulations were not significantly different (P = 0.05). The results were entered in the SITVIT2 database to assign specific shared type designations, corresponding genotypic lineages, and geographical distributions and compared to available data from neighboring countries (Germany, n = 704; Czech Republic, n = 530; Sweden, n = 379; Kaliningrad, Russia, n = 90) and strains from previous studies in Poland (n = 317). MDR strains resulted in 27 patterns (20 unique strains within the study and 7 clusters containing 2 to 6 isolates per cluster with a clustering rate of 56.5%) and belonged to the following genotypic lineages: ill-defined T family (28.3%), Haarlem (17.4%), Latin American and Mediterranean (LAM) (13%), Beijing (8.7%), S family (4.35%), and the X clade (2.17%). Comparison of the genetic structure of the MDR strains with that of INH-monoresistant strains showed that a total of 9 patterns were shared by both groups; these represented 1/3 of the MDR strains and 2/3 of the INH-monoresistant strains. Interestingly, 76.1% of the MDR isolates and 71.8% of the INH-resistant isolates yielded spoligotypes that were previously reported from Poland. The observation that nearly half of the spoligotypes identified among both MDR (48.1%) and INH-monoresistant (43.3%) M. tuberculosis isolates were present in Polands neighboring countries suggested that a significant proportion of MDR and INH-resistant TB cases in Poland were caused by strains actively circulating in Poland or its neighbors. Our results corroborate the leading role of the T and Haarlem genotypes in the epidemiology of drug-resistant TB in Poland. Nevertheless, the LAM and Beijing family strains that infected, correspondingly, 13% and 9% of patients with MDR-TB were absent among the strains from patients with INH-monoresistant TB, suggesting that a proportion of MDR-TB cases in Poland are due to ongoing transmission of MDR clones exhibiting specific genotypes. Study of the population genetic relationships between MDR and INH-monoresistant strains by drawing minimum spanning trees showed that ill-defined T1 sublineage strains (1/3 of all INH-monoresistant strains), represented by its prototype, SIT53, constituted the central node of the tree, followed by strains belonging to the well-defined H3, H1, and S subgroups. However, the MDR group, in addition, contained LAM (n = 6) and Beijing (n = 4) lineage isolates. With the exception of the 4 Beijing lineage strains in the latter group and a single orphan isolate in the INH-monoresistant group, none of the remaining 112/117 isolates belonged to principal genetic group 1 (PGG1) in our study. Given the high rate of clustering and the near absence of immigrants in the study, the persistence of MDR-TB in Poland seems to result from active transmission of MDR strains within the autochthonous population, the bulk of it caused by evolutionarily recent tubercle bacilli.


Journal of Infection | 2012

Transmission of tuberculosis within family-households

Ewa Augustynowicz-Kopeć; Tomasz Jagielski; Monika Kozińska; Kristin Kremer; Dick van Soolingen; Jacek Bielecki; Zofia Zwolska

OBJECTIVE The introduction of molecular typing methods in the 1990s to study the epidemiology of tuberculosis (TB) has significantly improved the possibilities of quantifying transmission of Mycobacterium tuberculosis in different human settings. The purpose of this study was to investigate transmission of TB in 35 family-households in Poland. METHODS Two PCR-based genotyping methods: spoligotyping and mycobacterial interspersed repetitive unit-variable number of tandem repeats (MIRU-VNTR) typing were used. RESULTS Of 78 patients, 49 (63%), could be assigned to intra-household transmission on the basis of identical DNA fingerprints upon a combined typing approach. However, if a single spoligotype spacer or a single MIRU-VNTR locus variation was tolerated in the cluster definition, the intra-household transmission raised to 85% of all patients. For 12 patients in 6 households, the M. tuberculosis isolates were clearly distinct in either spoligotyping or VNTR typing or in both genotyping methods, suggesting that these patients were infected by the sources in the community. CONCLUSIONS This study is the first to provide the results of a molecular epidemiological investigation performed within family-households in Poland. It shows the household setting as an important reservoir of M. tuberculosis transmission, and thus argues in favor of routine and extensive screening of the family contacts of TB patients.


European Journal of Clinical Microbiology & Infectious Diseases | 2011

Identification and differentiation of Trichophyton rubrum clinical isolates using PCR-RFLP and RAPD methods

Anita Hryncewicz-Gwóźdź; Tomasz Jagielski; A. Dobrowolska; Jacek C. Szepietowski; Eugeniusz Baran

Trichophyton rubrum represents the most frequently isolated causative agent of superficial dermatophyte infections. Several genotyping methods have recently been introduced to improve the delineation between pathogenic fungi at both the species and the strain levels. The purpose of this study was to apply selected DNA fingerprinting methods to the identification and strain discrimination of T. rubrum clinical isolates. Fifty-seven isolates from as many tinea patients were subjected to species identification by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) analysis and strain differentiation using a randomly amplified polymorphic DNA (RAPD) method, with two primers designated 1 and 6. Using PCR-RFLP, 55 of the isolates studied were confirmed to be T. rubrum. Among those, a total of 40 and five distinct profiles were obtained by RAPD with primers 1 and 6, respectively. The combination of profiles from both RAPD assays resulted in 47 genotypes and an overall genotypic diversity rate of 85.4%. A dendrogram analysis performed on the profiles generated by RAPD with primer 1 showed most of the isolates (87.3%) to be genetically related. PCR-RFLP serves as a rapid and reliable method for the identification of T. rubrum species, while the RAPD analysis is rather a disadvantageous tool for T. rubrum strain typing.

Collaboration


Dive into the Tomasz Jagielski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zofia Zwolska

Vietnam Academy of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jakko van Ingen

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaroslaw Dziadek

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge