Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomasz Kacprzak is active.

Publication


Featured researches published by Tomasz Kacprzak.


Monthly Notices of the Royal Astronomical Society | 2012

Image analysis for cosmology: results from the GREAT10 Galaxy Challenge

Thomas D. Kitching; Sreekumar T. Balan; Sarah Bridle; N. Cantale; F. Courbin; T. F. Eifler; Marc Gentile; M. S. S. Gill; Stefan Harmeling; Catherine Heymans; Michael Hirsch; K. Honscheid; Tomasz Kacprzak; D. Kirkby; Daniel Margala; Richard Massey; P. Melchior; G. Nurbaeva; K. Patton; J. Rhodes; Barnaby Rowe; Andy Taylor; M. Tewes; Massimo Viola; Dugan Witherick; Lisa Voigt; J. Young; Joe Zuntz

We present the results from the first public blind point-spread function (PSF) reconstruction challenge, the GRavitational lEnsing Accuracy Testing 2010 (GREAT10) Star Challenge. Reconstruction of a spatially varying PSF, sparsely sampled by stars, at non-star positions is a critical part in the image analysis for weak lensing where inaccuracies in the modeled ellipticity e and size R^2 can impact the ability to measure the shapes of galaxies. This is of importance because weak lensing is a particularly sensitive probe of dark energy and can be used to map the mass distribution of large scale structure. Participants in the challenge were presented with 27,500 stars over 1300 images subdivided into 26 sets, where in each set a category change was made in the type or spatial variation of the PSF. Thirty submissions were made by nine teams. The best methods reconstructed the PSF with an accuracy of σ(e) ≈ 2.5 × 10^(–4) and σ(R^2)/R^2 ≈ 7.4 × 10^(–4). For a fixed pixel scale, narrower PSFs were found to be more difficult to model than larger PSFs, and the PSF reconstruction was severely degraded with the inclusion of an atmospheric turbulence model (although this result is likely to be a strong function of the amplitude of the turbulence power spectrum).


Monthly Notices of the Royal Astronomical Society | 2012

Noise bias in weak lensing shape measurements

Alexandre Refregier; Tomasz Kacprzak; Adam Amara; Sarah Bridle; Barnaby Rowe

Weak lensing experiments are a powerful probe into cosmology through their measurement of the mass distribution of the universe. A challenge for this technique is to control systematic errors that occur when measuring the shapes of distant galaxies. In this paper, we investigate noise bias, a systematic error that arises from second-order noise terms in the shape measurement process. We first derive analytical expressions for the bias of general maximum-likelihood estimators in the presence of additive noise. We then find analytical expressions for a simplified toy model in which galaxies are modelled and fitted with a Gaussian with its size as a single free parameter. Even for this very simple case we find a significant effect. We also extend our analysis to a more realistic six-parameter elliptical Gaussian model. We find that the noise bias is generically of the order of the inverse-squared signal-to-noise ratio (SNR) of the galaxies and is thus of the order of a percent for galaxies of SNR 10, i.e. comparable to the weak lensing shear signal. This is nearly two orders of magnitude greater than the systematic requirements for future all-sky weak lensing surveys. We discuss possible ways to circumvent this effect, including a calibration method using simulations discussed in an associated paper.


Monthly Notices of the Royal Astronomical Society | 2016

The DES Science Verification weak lensing shear catalogues

M. Jarvis; E. Sheldon; J. Zuntz; Tomasz Kacprzak; Sarah Bridle; Adam Amara; Robert Armstrong; M. R. Becker; G. M. Bernstein; C. Bonnett; C. L. Chang; Ritanjan Das; J. P. Dietrich; A. Drlica-Wagner; T. F. Eifler; C. Gangkofner; D. Gruen; Michael Hirsch; Eric Huff; Bhuvnesh Jain; S. Kent; D. Kirk; N. MacCrann; P. Melchior; A. A. Plazas; Alexandre Refregier; Barnaby Rowe; E. S. Rykoff; S. Samuroff; C. Sanchez

We present weak lensing shear catalogues for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogues of 2.12 million and 3.44 million galaxies respectively. We detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SV data. We also discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogues for the full 5-year DES, which is expected to cover 5000 square degrees.


Monthly Notices of the Royal Astronomical Society | 2012

Measurement and calibration of noise bias in weak lensing galaxy shape estimation

Tomasz Kacprzak; Joe Zuntz; Barnaby Rowe; Sarah Bridle; Alexandre Refregier; Adam Amara; Lisa Voigt; Michael Hirsch

Weak gravitational lensing has the potential to constrain cosmological parameters to high precision. However, as shown by the Shear Testing Programmes and Gravitational lensing Accuracy Testing challenges, measuring galaxy shears is a non-trivial task: various methods introduce different systematic biases which have to be accounted for. We investigate how pixel noise on the image affects the bias on shear estimates from a maximum likelihood forward model-fitting approach using a sum of co-elliptical Sersic profiles, in complement to the theoretical approach of an associated paper. We evaluate the bias using a simple but realistic galaxy model and find that the effects of noise alone can cause biases of the order of 1–10 per cent on measured shears, which is significant for current and future lensing surveys. We evaluate a simulation-based calibration method to create a bias model as a function of galaxy properties and observing conditions. This model is then used to correct the simulated measurements. We demonstrate that, for the simple case in which the correct range of galaxy models is used in the fit, the calibration method can reduce noise bias to the level required for estimating cosmic shear in upcoming lensing surveys.


Astrophysical Journal Supplement Series | 2014

THE THIRD GRAVITATIONAL LENSING ACCURACY TESTING (GREAT3) CHALLENGE HANDBOOK

Rachel Mandelbaum; Barnaby Rowe; James Bosch; C. Chang; F. Courbin; M. S. S. Gill; M. Jarvis; Arun Kannawadi; Tomasz Kacprzak; Claire Lackner; Alexie Leauthaud; Hironao Miyatake; Reiko Nakajima; Jason Rhodes; Melanie Simet; Joe Zuntz; Bob Armstrong; Sarah Bridle; Jean Coupon; J. P. Dietrich; Marc Gentile; Catherine Heymans; Alden S. Jurling; Stephen M. Kent; D. Kirkby; Daniel Margala; Richard Massey; P. Melchior; J. R. Peterson; A. Roodman

The GRavitational lEnsing Accuracy Testing 3 (GREAT3) challenge is the third in a series of image analysis challenges, with a goal of testing and facilitating the development of methods for analyzing astronomical images that will be used to measure weak gravitational lensing. This measurement requires extremely precise estimation of very small galaxy shape distortions, in the presence of far larger intrinsic galaxy shapes and distortions due to the blurring kernel caused by the atmosphere, telescope optics, and instrumental effects. The GREAT3 challenge is posed to the astronomy, machine learning, and statistics communities, and includes tests of three specific effects that are of immediate relevance to upcoming weak lensing surveys, two of which have never been tested in a community challenge before. These effects include many novel aspects including realistically complex galaxy models based on high-resolution imaging from space; a spatially varying, physically motivated blurring kernel; and a combination of multiple different exposures. To facilitate entry by people new to the field, and for use as a diagnostic tool, the simulation software for the challenge is publicly available, though the exact parameters used for the challenge are blinded. Sample scripts to analyze the challenge data using existing methods will also be provided. See http://great3challenge.info and http://great3.projects.phys.ucl.ac.uk/leaderboard/ for more information.


Monthly Notices of the Royal Astronomical Society | 2013

IM3SHAPE: A maximum-likelihood galaxy shear measurement code for cosmic gravitational lensing

Joe Zuntz; Tomasz Kacprzak; Lisa Voigt; Michael Hirsch; Barnaby Rowe; Sarah Bridle

We present and describe IM3SHAPE, a new publicly available galaxy shape measurement code for weak gravitational lensing shear. IM3SHAPE performs a maximum likelihood fit of a bulgeplus-disc galaxy model to noisy images, incorporating an applied point spread function. We detail challenges faced and choices made in its design and implementation, and then discuss various limitations that affect this and other maximum like lihood methods. We assess the bias arising from fitting an incorrect galaxy model using simple n oise-free images and find that it should not be a concern for current cosmic shear surveys. We test IM3SHAPE on the GREAT08 Challenge image simulations, and meet the requirements for upcoming cosmic shear surveys in the case that the simulations are encompassed by the fitted model, using a simple correction for image noise bias. For the fiducial branch of GREAT08 we obt ain a negligible additive shear bias and sub-two percent level multiplicative bias, which i s suitable for analysis of current surveys. We fall short of the sub-percent level requirement for upcoming surveys, which we attribute to a combination of noise bias and the mis-match between our galaxy model and the model used in the GREAT08 simulations. We meet the requirements for current surveys across all branches of GREAT08, except those with small or high noise galaxies, which we would cut from our analysis. Using the GREAT08 metric we we obtain a score of Q=717 for the usable branches, relative to the goal of Q=1000 for futur e experiments. The code is freely available from https://bitbucket.org/joezuntz/im3shap e.


Monthly Notices of the Royal Astronomical Society | 2016

Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data

Tomasz Kacprzak; D. Kirk; O. Friedrich; Adam Amara; Alexandre Refregier; Laura Marian; J. P. Dietrich; E. Suchyta; J. Aleksić; David Bacon; M. R. Becker; C. Bonnett; Sarah Bridle; C. L. Chang; T. F. Eifler; W. G. Hartley; Eric Huff; E. Krause; N. MacCrann; P. Melchior; Andrina Nicola; S. Samuroff; E. Sheldon; M. A. Troxel; J. Weller; J. Zuntz; T. M. C. Abbott; F. B. Abdalla; Robert Armstrong; A. Benoit-Lévy

Shear peak statistics has gained a lot of attention recently as a practical alternative to the two-point statistics for constraining cosmological parameters. We perform a shear peak statistics analysis of the Dark Energy Survey (DES) Science Verification (SV) data, using weak gravitational lensing measurements from a 139 deg² field. We measure the abundance of peaks identified in aperture mass maps, as a function of their signal-to-noise ratio, in the signal-to-noise range 0 4 would require significant corrections, which is why we do not include them in our analysis. We compare our results to the cosmological constraints from the two-point analysis on the SV field and find them to be in good agreement in both the central value and its uncertainty. We discuss prospects for future peak statistics analysis with upcoming DES data.


Monthly Notices of the Royal Astronomical Society | 2016

Cross-correlation of gravitational lensing from DES Science Verification data with SPT and Planck lensing

D. Kirk; Y. Omori; A. Benoit-Lévy; R. Cawthon; C. L. Chang; P. Larsen; Adam Amara; David Bacon; T. M. Crawford; Scott Dodelson; P. Fosalba; T. Giannantonio; Gilbert P. Holder; Bhuvnesh Jain; Tomasz Kacprzak; Ofer Lahav; N. MacCrann; Andrina Nicola; Alexandre Refregier; E. Sheldon; K. Story; M. A. Troxel; J. D. Vieira; V. Vikram; J. Zuntz; Timothy M. C. Abbott; F. B. Abdalla; M. R. Becker; B. A. Benson; G. M. Bernstein

We measure the cross-correlation between weak lensing of galaxy images and of the cosmic microwave background (CMB). The effects of gravitational lensing on different sources will be correlated if the lensing is caused by the same mass fluctuations. We use galaxy shape measurements from 139 deg(2) of the Dark Energy Survey (DES) Science Verification data and overlapping CMB lensing from the South Pole Telescope (SPT) and Planck. The DES source galaxies have a median redshift of z(med) similar to 0.7, while the CMB lensing kernel is broad and peaks at z similar to 2. The resulting cross-correlation is maximally sensitive to mass fluctuations at z similar to 0.44. Assuming the Planck 2015 best-fitting cosmology, the amplitude of the DESxSPT cross-power is found to be A(SPT) = 0.88 +/- 0.30 and that from DESxPlanck to be A(Planck) = 0.86 +/- 0.39, where A = 1 corresponds to the theoretical prediction. These are consistent with the expected signal and correspond to significances of 2.9 sigma and 2.2 sigma, respectively. We demonstrate that our results are robust to a number of important systematic effects including the shear measurement method, estimator choice, photo-z uncertainty and CMB lensing systematics. We calculate a value of A = 1.08 +/- 0.36 for DESxSPT when we correct the observations with a simple intrinsic alignment model. With three measurements of this cross-correlation now existing in the literature, there is not yet reliable evidence for any deviation from the expected LCDM level of cross-correlation. We provide forecasts for the expected signal-to-noise ratio of the combination of the five-year DES survey and SPT-3G.


Monthly Notices of the Royal Astronomical Society | 2016

Galaxy bias from the Dark Energy Survey Science Verification data: Combining galaxy density maps and weak lensing maps

C. L. Chang; Arnau Pujol; E. Gaztanaga; Adam Amara; Alexandre Refregier; David Bacon; M. R. Becker; C. Bonnett; J. Carretero; Francisco J. Castander; M. Crocce; P. Fosalba; T. Giannantonio; W. Hartley; M. Jarvis; Tomasz Kacprzak; A. Ross; E. Sheldon; M. A. Troxel; V. Vikram; J. Zuntz; Timothy M. C. Abbott; F. B. Abdalla; S. Allam; J. Annis; A. Benoit-Lévy; E. Bertin; David J. Brooks; E. Buckley-Geer; D. L. Burke

We measure the redshift evolution of galaxy bias for a magnitude-limited galaxy sample by combining the galaxy density maps and weak lensing shear maps for a ˜116 deg2 area of the Dark Energy Survey (DES) Science Verification (SV) data. This method was first developed in Amara et al. and later re-examined in a companion paper with rigorous simulation tests and analytical treatment of tomographic measurements. In this work we apply this method to the DES SV data and measure the galaxy bias for a i < 22.5 galaxy sample. We find the galaxy bias and 1sigma error bars in four photometric redshift bins to be 1.12 ± 0.19 (z = 0.2-0.4), 0.97 ± 0.15 (z = 0.4-0.6), 1.38 ± 0.39 (z = 0.6-0.8), and 1.45 ± 0.56 (z = 0.8-1.0). These measurements are consistent at the 2sigma level with measurements on the same data set using galaxy clustering and cross-correlation of galaxies with cosmic microwave background lensing, with most of the redshift bins consistent within the 1sigma error bars. In addition, our method provides the only sigma8 independent constraint among the three. We forward model the main observational effects using mock galaxy catalogues by including shape noise, photo-z errors, and masking effects. We show that our bias measurement from the data is consistent with that expected from simulations. With the forthcoming full DES data set, we expect this method to provide additional constraints on the galaxy bias measurement from more traditional methods. Furthermore, in the process of our measurement, we build up a 3D mass map that allows further exploration of the dark matter distribution and its relation to galaxy evolution.


Monthly Notices of the Royal Astronomical Society | 2014

Sérsic galaxy models in weak lensing shape measurement: model bias, noise bias and their interaction

Tomasz Kacprzak; Sarah Bridle; Barnaby Rowe; Lisa Voigt; Joe Zuntz; Michael Hirsch; N. MacCrann

Cosmic shear is a powerful probe of cosmological parameters, but its potential can be fully utilised only if galaxy shapes are measured with great accuracy. Two major effects have been identified which are likely to account for most of the bias for maximum likelihood methods in recent shear measurement challenges. Model bias occurs when the true galaxy shape is not well represented by the fitted model. Noise bias occurs due to the non-linear relationship between image pixels and galaxy shape. In this paper we investigate the potential interplay between these two effects when an imperfect model is used in the presence of high noise. We present analytical expressions for this bias, which depends on the residual difference between the model and real data. They can lead to biases not accounted for in previous calibration schemes. By measuring the model bias, noise bias and their interaction, we provide a complete statistical framework for measuring galaxy shapes with model fitting methods from GRavitational lEnsing Accuracy Testing (GREAT) like images. We demonstrate the noise and model interaction bias using a simple toy model, which indicates that this effect can potentially be significant. Using real galaxy images from the Cosmological Evolution Survey (COSMOS) we quantify the strength of the model bias, noise bias and their interaction. We find that the interaction term is often a similar size to the model bias term, and is smaller than the requirements of the current and shortly upcoming galaxy surveys.

Collaboration


Dive into the Tomasz Kacprzak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Bridle

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

E. Sheldon

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. Zuntz

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. M. Bernstein

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge