Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomi Rantamäki is active.

Publication


Featured researches published by Tomi Rantamäki.


Developmental Neurobiology | 2010

The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity

Eero Castrén; Tomi Rantamäki

Recent evidence suggests that neuronal plasticity plays an important role in the recovery from depression. Antidepressant drugs and electroconvulsive shock treatment increase the expression of several molecules, which are associated with neuronal plasticity, in particular the neurotrophin BDNF and its receptor TrkB. Furthermore, these treatments increase neurogenesis and synaptic numbers in several brain areas. Conversely, depression, at least in its severe form, is associated with reduced volumes of the hippocampus and prefrontal cortex and in at least some cases these neurodegenerative signs can be attenuated by successful treatment. Such observations suggest a central role for neuronal plasticity in depression and the antidepressant effect, and also implicate BDNF signaling as a mediator of this plasticity. The antidepressant fluoxetine can reactivate developmental‐like neuronal plasticity in the adult visual cortex, which, under appropriate environmental guidance, leads to the rewiring of a developmentally dysfunctional neural network. These observations suggest that the simple form of the neurotrophic hypothesis of depression, namely, that deficient levels of neurotrophic support underlies mood disorders and increases in these neurotrophic factors to normal levels brings about mood recovery, may not sufficiently explain the complex process of recovery from depression. This review discusses recent data on the role of BDNF and its receptors in depression and the antidepressant response and suggests a model whereby the effects of antidepressant treatments could be explained by a reactivation of activity‐dependent and BDNF‐mediated cortical plasticity, which in turn leads to the adjustment of neuronal networks to better adapt to environmental challenges.


Neuropsychopharmacology | 2007

Pharmacologically Diverse Antidepressants Rapidly Activate Brain-Derived Neurotrophic Factor Receptor TrkB and Induce Phospholipase-Cγ Signaling Pathways in Mouse Brain

Tomi Rantamäki; Panu Hendolin; Aino Kankaanpää; Jelena Mijatovic; Petteri Piepponen; Enrico Domenici; Moses V. Chao; Pekka T. Männistö; Eero Castrén

Previous studies suggest that brain-derived neurotrophic factor and its receptor TrkB are critically involved in the therapeutic actions of antidepressant drugs. We have previously shown that the antidepressants imipramine and fluoxetine produce a rapid autophosphorylation of TrkB in the rodent brain. In the present study, we have further examined the biochemical and functional characteristics of antidepressant-induced TrkB activation in vivo. We show that all the antidepressants examined, including inhibitors of monoamine transporters and metabolism, activate TrkB rapidly in the rodent anterior cingulate cortex and hippocampus. Furthermore, the results indicate that acute and long-term antidepressant treatments induce TrkB-mediated activation of phospholipase-Cγ1 (PLCγ1) and increase the phosphorylation of cAMP-related element binding protein, a major transcription factor mediating neuronal plasticity. In contrast, we have not observed any modulation of the phosphorylation of TrkB Shc binding site, phosphorylation of mitogen-activated protein kinase or AKT by antidepressants. We also show that in the forced swim test, the behavioral effects of specific serotonergic antidepressant citalopram, but not those of the specific noradrenergic antidepressant reboxetine, are crucially dependent on TrkB signaling. Finally, brain monoamines seem to be critical mediators of antidepressant-induced TrkB activation, as antidepressants reboxetine and citalopram do not produce TrkB activation in the brains of serotonin- or norepinephrine-depleted mice. In conclusion, our data suggest that rapid activation of the TrkB neurotrophin receptor and PLCγ1 signaling is a common mechanism for all antidepressant drugs.


Cellular and Molecular Neurobiology | 2005

Enhanced BDNF Signaling is Associated with an Antidepressant-like Behavioral Response and Changes in Brain Monoamines

Eija Koponen; Tomi Rantamäki; Vootele Võikar; Tommi Saarelainen; Ewen MacDonald; Eero Castrén

Summary1.Neurotrophins and serotonin have both been implicated in the pathophysiology of depression and in the mechanisms of antidepressant treatments.2.Brain-derived neurotrophic factor (BDNF) influences the growth and plasticity of serotonergic (5-HT) neurons via the activation of trkB receptor.3.Transgenic mice overexpressing the full-length trkB receptor (TrkB.TK+) and showing increased trkB activity in brain, and their wild type (WT) littermates, were injected with the antidepressant fluoxetine or saline, and analyzed behaviorally in the forced swimming test paradigm and biochemically for the concentrations of brain monoamines and their metabolites.4.The TrkB.TK+ mice displayed increased latency to immobility in the forced swim test, suggesting resistance to behavioral despair.5.Fluoxetine increased the latency to immobility in wild-type mice to a similar level as seen in the trkB.TK+ mice after saline treatment, but had no further behavioral effect in the swimming behavior of the trkB.TK+ mice.6.Only minor differences in the levels of brain monoamines and their metabolites were observed between the transgenic and wild-type mice.7.These data, together with other recent observations, suggest that trkB activation may play a critical role in the behavioral responses to antidepressant drugs in mice.


CNS Drugs | 2010

Role of brain-derived neurotrophic factor in the aetiology of depression: implications for pharmacological treatment.

Eero Castrén; Tomi Rantamäki

Brain-derived neurotrophic factor (BDNF) is a critical mediator of activity-dependent neuronal plasticity in the cerebral cortex. Deficits in neurotrophic factors have been proposed to underlie mood disorders. However, recent evidence suggests that mood disorders may be produced by abnormalities in the adaptation of neural networks to environmental conditions. Antidepressants may act by enhancing neuronal plasticity, which allows environmental inputs to modify the neuronal networks to better fine tune the individual to the outside world. Recent observations in the visual cortex directly support this idea. According to the network hypothesis of depression, changes in the levels of neurotrophins including BDNF may not directly produce depression or an antidepressant effect, but neurotrophins may act as critical tools in the process whereby environmental conditions guide neuronal networks to better adapt to the environment. This hypothesis suggests that antidepressant drugs should not be used alone but should always be combined with rehabilitation to guide the plastic networks within the brain.


PLOS ONE | 2011

Antidepressant Drugs Transactivate TrkB Neurotrophin Receptors in the Adult Rodent Brain Independently of BDNF and Monoamine Transporter Blockade

Tomi Rantamäki; Liisa Vesa; Hanna Antila; Antonio Di Lieto; Päivi Tammela; Angelika Schmitt; Klaus-Peter Lesch; Maribel Rios; Eero Castrén

Background Antidepressant drugs (ADs) have been shown to activate BDNF (brain-derived neurotrophic factor) receptor TrkB in the rodent brain but the mechanism underlying this phenomenon remains unclear. ADs act as monoamine reuptake inhibitors and after prolonged treatments regulate brain bdnf mRNA levels indicating that monoamine-BDNF signaling regulate AD-induced TrkB activation in vivo. However, recent findings demonstrate that Trk receptors can be transactivated independently of their neurotrophin ligands. Methodology In this study we examined the role of BDNF, TrkB kinase activity and monoamine reuptake in the AD-induced TrkB activation in vivo and in vitro by employing several transgenic mouse models, cultured neurons and TrkB-expressing cell lines. Principal Findings Using a chemical-genetic TrkBF616A mutant and TrkB overexpressing mice, we demonstrate that ADs specifically activate both the maturely and immaturely glycosylated forms of TrkB receptors in the brain in a TrkB kinase dependent manner. However, the tricyclic AD imipramine readily induced the phosphorylation of TrkB receptors in conditional bdnf −/− knock-out mice (132.4±8.5% of control; P = 0.01), indicating that BDNF is not required for the TrkB activation. Moreover, using serotonin transporter (SERT) deficient mice and chemical lesions of monoaminergic neurons we show that neither a functional SERT nor monoamines are required for the TrkB phosphorylation response induced by the serotonin selective reuptake inhibitors fluoxetine or citalopram, or norepinephrine selective reuptake inhibitor reboxetine. However, neither ADs nor monoamine transmitters activated TrkB in cultured neurons or cell lines expressing TrkB receptors, arguing that ADs do not directly bind to TrkB. Conclusions The present findings suggest that ADs transactivate brain TrkB receptors independently of BDNF and monoamine reuptake blockade and emphasize the need of an intact tissue context for the ability of ADs to induce TrkB activity in brain.


Molecular Biology of the Cell | 2008

Cholesterol Loss Enhances TrkB Signaling in Hippocampal Neurons Aging in Vitro

Mauricio G. Martin; Simona Perga; Laura Trovò; Andrea Rasola; Pontus C. Holm; Tomi Rantamäki; Tibor Harkany; Eero Castrén; Federica Chiara; Carlos G. Dotti

Binding of the neurotrophin brain-derived neurotrophic factor (BDNF) to the TrkB receptor is a major survival mechanism during embryonic development. In the aged brain, however, BDNF levels are low, suggesting that if TrkB is to play a role in survival at this stage additional mechanisms must have developed. We here show that TrkB activity is most robust in the hippocampus of 21-d-old BDNF-knockout mice as well as in old, wild-type, and BDNF heterozygous animals. Moreover, robust TrkB activity is evident in old but not young hippocampal neurons differentiating in vitro in the absence of any exogenous neurotrophin and also in neurons from BDNF -/- embryos. Age-associated increase in TrkB activity correlated with a mild yet progressive loss of cholesterol. This, in turn, correlated with increased expression of the cholesterol catabolic enzyme cholesterol 24-hydroxylase. Direct cause-effect, cholesterol loss-high TrkB activity was demonstrated by pharmacological means and by manipulating the levels of cholesterol 24-hydroxylase. Because reduced levels of cholesterol and increased expression of choleseterol-24-hydroxylase were also observed in the hippocampus of aged mice, changes in cellular cholesterol content may be used to modulate receptor activity strength in vivo, autonomously or as a way to complement the natural decay of neurotrophin production.


Neurobiology of Disease | 2011

BDNF and TrkB in neuronal differentiation of Fmr1-knockout mouse.

Verna Louhivuori; Annalisa Vicario; Marko Uutela; Tomi Rantamäki; Lauri M. Louhivuori; Eero Castrén; Enrico Tongiorgi; Karl E.O. Åkerman; Maija L. Castrén

Fragile X syndrome (FXS) is a common cause of inherited mental retardation and the best characterized form of autistic spectrum disorders. FXS is caused by the loss of functional fragile X mental retardation protein (FMRP), which leads to abnormalities in the differentiation of neural progenitor cells (NPCs) and in the development of dendritic spines and neuronal circuits. Brain-derived neurotrophic factor (BDNF) and its TrkB receptors play a central role in neuronal maturation and plasticity. We studied BDNF/TrkB actions in the absence of FMRP and show that an increase in catalytic TrkB expression in undifferentiated NPCs of Fmr1-knockout (KO) mice, a mouse model for FXS, is associated with changes in the differentiation and migration of neurons expressing TrkB in neurosphere cultures and in the developing cortex. Aberrant intracellular calcium responses to BDNF and ATP in subpopulations of differentiating NPCs combined with changes in the expression of BDNF and TrkB suggest cell subtype-specific alterations during early neuronal maturation in the absence of FMRP. Furthermore, we show that dendritic targeting of Bdnf mRNA was increased under basal conditions and further enhanced in cortical layer V and hippocampal CA1 neurons of Fmr1-KO mice by pilocarpine-induced neuronal activity represented by convulsive seizures, suggesting that BDNF/TrkB-mediated feedback mechanisms for strengthening the synapses were compromised in the absence of FMRP. Pilocarpine-induced seizures caused an accumulation of Bdnf mRNA transcripts in the most proximal segments of dendrites in cortical but not in hippocampal neurons of Fmr1-KO mice. In addition, BDNF protein levels were increased in the hippocampus but reduced in the cortex of Fmr1-KO mice in line with regional differences of synaptic plasticity in the brain of Fmr1-KO mice. Altogether, the present data suggest that alterations in the BDNF/TrkB signaling modulate brain development and impair synaptic plasticity in FXS.


Neurobiology of Aging | 2012

Impaired TrkB receptor signaling contributes to memory impairment in APP/PS1 mice

Susanna Kemppainen; Tomi Rantamäki; André Jerónimo-Santos; Gregoire Lavasseur; Henri Autio; Nina N. Karpova; Elisa Kärkkäinen; Saara Stavén; Hugo Vicente Miranda; Tiago F. Outeiro; Maria José Diógenes; Serge Laroche; Sabrina Davis; Ana M. Sebastião; Eero Castrén; Heikki Tanila

Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal plasticity, learning, and memory. Levels of BDNF and its main receptor TrkB (TrkB.TK) have been reported to be decreased while the levels of the truncated TrkB (TrkB.T1) are increased in Alzheimers disease. We show here that incubation with amyloid-β increased TrkB.T1 receptor levels and decreased TrkB.TK levels in primary neurons. In vivo, APPswe/PS1dE9 transgenic mice (APdE9) showed an age-dependent relative increase in cortical but not hippocampal TrkB.T1 receptor levels compared with TrkB.TK. To investigate the role of TrkB isoforms in Alzheimers disease, we crossed AP mice with mice overexpressing the truncated TrkB.T1 receptor (T1) or the full-length TrkB.TK isoform. Overexpression of TrkB.T1 in APdE9 mice exacerbated their spatial memory impairment while the overexpression of TrkB.TK alleviated it. These data suggest that amyloid-β changes the ratio between TrkB isoforms in favor of the dominant-negative TrkB.T1 isoform both in vitro and in vivo and supports the role of BDNF signaling through TrkB in the pathophysiology and cognitive deficits of Alzheimers disease.


Genes, Brain and Behavior | 2011

A role for BDNF/TrkB signaling in behavioral and physiological consequences of social defeat stress.

Maria Razzoli; Enrico Domenici; Lucia Carboni; Tomi Rantamäki; Jesse Lindholm; Eero Castrén; Roberto Arban

Accumulating evidences underlie the importance of the interplay between environmental and genetic factors in contributing to the risk to develop mental illness. Brain‐derived neurotrophic factor (BDNF) and its Tyrosine receptor kinase B (TrkB) receptor play a fundamental contribution to brain development and plastic adaptations to life events. In the present study, the potential for the BDNF/TrkB contribution in increasing vulnerability to negative social experiences was assessed by subjecting TrkB.T1 overexpressing mice to a chronic social defeat model. TrkB.T1 mice overexpress the dominant‐negative truncated splice variant of TrkB receptor leading to decreased BDNF signaling. After repeated social defeat, mice were assessed in a longitudinal study for behavioral, physiological, endocrine and immune responses potentially related to psychiatric endophenotypes. TrkB.T1 overexpression corresponded to smaller changes in metabolic parameters such as body weight, food intake, feed efficiency and peripheral ghrelin levels compared with wild‐type (wt) littermates following social defeat. Interestingly, 4 weeks after the last defeat, TrkB.T1 overexpressing mice exhibited more consistent social avoidance effects than what observed in wt subjects. Finally, previously unreported effects of TrkB mutations could be observed on lymphoid organ weight and on peripheral immune biomarker levels, such as interleukin‐1α and regulated on activation, normal, T‐cell expressed, and secreted (RANTES), thus suggesting a systemic role of BDNF signaling in immune function. In conclusion, the present data support a contribution of TrkB to stress vulnerability that, given the established role of TrkB in the response to antidepressant treatment, calls for further studies addressing the link between stress susceptibility and variability in drug efficacy.


Neuropharmacology | 2006

The effects of acute and long-term lithium treatments on trkB neurotrophin receptor activation in the mouse hippocampus and anterior cingulate cortex

Tomi Rantamäki; Juha Knuuttila; Marie-Estelle Hokkanen; Eero Castrén

As brain-derived neurotrophic factor (BDNF) and its receptor trkB are linked to the etiology and treatment of mood disorders, we examined the effects of acute and long-term treatment of mood-stabilizer lithium on trkB activation and signaling and BDNF levels in the mouse anterior cingulate cortex (AC) and hippocampus (HC). The trkB activity was measured using specific antibodies against the phosphorylated trkB catalytic domain (pY705/6) and the shc binding site (pY515). In the AC, both acute and long-term LiCl treatment enhanced the pY705/6 of trkB. In contrast, acute or long-term LiCl treatment did not significantly alter the pY705/6 of trkB in the HC. Interestingly, however, acute LiCl treatment significantly reduced the phosphorylation of cAMP related element binding protein (CREB), a major intracellular target of trkB, in the HC. Moreover, pY515 of trkB in the AC and HC was not altered by any of the treatment. Also, prolonged LiCl treatment had no significant effects on BDNF levels or CREB activation in either the AC or HC. The present results suggest that acute and long-term lithium treatment induces trkB activation in the AC but not in the HC. The activation of CREB is, however, significantly reduced in the HC after acute LiCl treatment.

Collaboration


Dive into the Tomi Rantamäki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henri Autio

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liisa Vesa

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge