Tomihiro Hirai
Osaka University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tomihiro Hirai.
Biological Trace Element Research | 2005
Tomihiro Hirai; Kazuaki Fukushima; Kazumasa Kumamoto; Hideo Iwahashi
The effects of some naturally occurring iron ion chelators and their derivatives on the electron transfer from ferrous ions to oxygen molecules were examined by measuring oxygen consumption rates. Of the compounds examined, quinolinic acid, fusaric acid, and 2-pyridinecarboxylic acid repressed the oxygen consumption, whereas chlorogenic acid, caffeic acid, gallic acid, catechol l-β-(3,4-dihydroxyphenyl) alanine, and xanthurenic acid accelerated it. Theoretical calculations showed that the energies of the highest occupied molecular orbitals (HOMOs) of [Fe(II)(ligand)3]− complexes were relatively high when the ligands were caffeic acid and its derivatives such as catechol, gallic acid, and l-β-(3,4-dihydroxyphenyl) alanine. On the other hand, the energies of the HOMOs of [Fe(II)(ligand)3]− complexes were relatively low when the ligands were quinolinic acid and its derivatives such as 2-pyridinecarboxylic acid and fusaric acid. The energies of the HOMOs appear to be closely related with acceleration or repression of the oxygen consumption; that is to say, when the energy of the HOMO is high, the oxygen consumption is accelerated, and vice versa.
Free Radical Research | 2005
Kazumasa Kumamoto; Tomihiro Hirai; Shiroh Kishioka; Hideo Iwahashi
Identification of free radicals was performed for the reaction mixtures of autoxidized 1,2-dilinoleoylphosphatidylcholine (DLPC) with ferrous ions (or DLPC hydroperoxide with ferrous ions) and of DLPC with soybean lipoxygenase using electron spin resonance (ESR), high performance liquid chromatography (HPLC)–ESR and HPLC–ESR–mass spectrometry (MS) combined use of spin trapping technique. ESR measurements of the reaction mixtures showed prominent signals with hyperfine coupling constants (aN=1.58 mT and aHβ=0.26 mT). Outstanding peaks with almost same retention times (autoxidized DLPC, 36.9 min; DLPC hydroperoxide, 35.0 min; DLPC with soybean lipoxygenase, 37.1 min) were observed on the elution profile of the HPLC–ESR analyses of the reaction mixtures. HPLC–ESR–MS analyses of the reaction mixtures gave two ions at m/z 266 and 179, suggesting that 4-POBN/pentyl radical adduct forms in these reaction mixtures.
Free Radical Research | 2007
Kazumasa Kumamoto; Tomihiro Hirai; Shiroh Kishioka; Hideo Iwahashi
Identification of a free radical is performed for the reaction mixture of rat brain homogenate with a ferrous ion/ascorbic acid system using EPR, high performance liquid chromatography–electron paramagnetic resonance spectrometry (HPLC–EPR) and high performance liquid chromatography–electron paramagnetic resonance–mass spectrometry (HPLC–EPR–MS). EPR measurements of the reaction mixtures showed prominent signals with hyperfine coupling constants (αN = 1.58 mT and αHβ = 0.26 mT). No EPR spectrum was detectable without rat brain homogenate, suggesting that the radical is derived from rat brain homogenate. An HPLC–EPR analysis of the reaction mixture showed a peak with retention time of 33.7 min. An HPLC–EPR–MS analysis of the peak gave two ions at m/z 224 and 137, suggesting that α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN)/ethyl radical adduct forms in the reaction mixture.
Journal of Biochemistry | 2009
Kazumasa Kumamoto; Tomihiro Hirai; Shiroh Kishioka; Hideo Iwahashi
In order to explore the mechanism of myoglobinuric renal toxicity, detection and identification of free radicals was performed for the reaction mixtures of bovine kidney microsomes. EPR measurements showed prominent signals for the control reaction mixture containing 2.0 mg protein/ml bovine kidney microsomes, 5 mM NADPH, 0.1 M 4-POBN and 29 mM phosphate buffer (pH 7.4). Addition of myoglobin (Mb) to the control reaction mixture resulted in increase of EPR peak height. The result indicates that Mb enhances the radical formation. An HPLC-EPR measurement showed three peaks with retention times of 29.4 min (P(1)), 32.4 min (P(2)) and 46.6 min (P(3)). HPLC-EPR-MS analyses of P(1) and P(2) gave ions at m/z 282. The results show that 4-POBN/hydroxypentyl radical adducts form in the reaction mixture. An HPLC-EPR-MS analysis of P(3) gave ions at m/z 266, indicating that 4-POBN/pentyl radical adduct forms in the reaction mixture.
Journal of Chromatography A | 2006
Hideo Iwahashi; Tomihiro Hirai; Kazumasa Kumamoto
Toxicology Letters | 2004
Kazumasa Kumamoto; Tomihiro Hirai; Shiroh Kishioka; Hideo Iwahashi
Journal of Biochemistry | 2003
Hideo Iwahashi; Kazumasa Kumamoto; Tomihiro Hirai
Japan journal of human growth and development research | 1992
Tomihiro Hirai
Japanese Journal of Physical Fitness and Sports Medicine | 1988
Shouji Tanaka; Nobuo Sakaki; Tomihiro Hirai; Yoshinori Ohyama; Hiroshige Yoshida
Japanese Journal of Physical Fitness and Sports Medicine | 1986
Tomihiro Hirai; Yoshinori Ohyama; Nobuo Sakai