Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tommaso D'Alessio is active.

Publication


Featured researches published by Tommaso D'Alessio.


international conference of the ieee engineering in medicine and biology society | 2007

Classification of Motor Activities through Derivative Dynamic Time Warping applied on Accelerometer Data

Rossana Muscillo; Silvia Conforto; Maurizio Schmid; P Caselli; Tommaso D'Alessio

In the context of tele-monitoring, great interest is presently devoted to physical activity, mainly of elderly or people with disabilities. In this context, many researchers studied the recognition of activities of daily living by using accelerometers. The present work proposes a novel algorithm for activity recognition that considers the variability in movement speed, by using dynamic programming. This objective is realized by means of a matching and recognition technique that determines the distance between the signal input and a set of previously defined templates. Two different approaches are here presented, one based on Dynamic Time Warping (DTW) and the other based on the Derivative Dynamic Time Warping (DDTW). The algorithm was applied to the recognition of gait, climbing and descending stairs, using a biaxial accelerometer placed on the shin. The results on DDTW, obtained by using only one sensor channel on the shin showed an average recognition score of 95%, higher than the values obtained with DTW (around 85%). Both DTW and DDTW consistently show higher classification rate than classical Linear Time Warping (LTW).


Journal of Electromyography and Kinesiology | 1999

Optimal rejection of movement artefacts from myoelectric signals by means of a wavelet filtering procedure

Silvia Conforto; Tommaso D'Alessio; Stefano Pignatelli

In this work the problem of rejection of motion artefacts from surface myoelectric signals, recorded during dynamic contractions, is studied. In fact, the extraction of frequency parameters and the detection of muscular activation patterns can be detrimentally affected by artefacts due to the movement of the surface electrodes, particularly stressed by the dynamic conditions of the exercise performed during measurement. In order to overcome this difficulty, four different filtering procedures have been tested and compared: a high-pass filtering procedure, a moving average procedure, a moving median procedure and a new adaptive wavelet based procedure, expressly designed for this work. Orthogonal Meyer wavelets are used with the aim of obtaining both a good reconstruction and a decomposition of the signal into non-overlapping bands. The four procedures have been tested with a set of different proofs utilising both synthetic and experimentally recorded myoelectric signals. The results show that the wavelet procedure performs better than the other methods both in information preservation and in time-detection. Moreover, the features of user-independence and adaptivity to the noise level suggest a wider range of applications of the proposed algorithm.


Gait & Posture | 2001

Hemodynamics as a possible internal mechanical disturbance to balance

Silvia Conforto; Maurizio Schmid; Valentina Camomilla; Tommaso D'Alessio; Aurelio Cappozzo

The postural control system is assessed by observing body sway while the subject involved aims at maintaining a specified up-right posture. Internal masses generate internal reaction forces that constitute an internal mechanical stimulus that may contribute to cause segmental displacements, i.e. body sway. Thus, gaining knowledge about the amplitude and direction of these reaction forces would contribute to gain insights into the mechanisms that influence the maintenance of balance and into its control. The 3-D force vector that acts on the body centre of mass (COM) and is associated with the transient blood movement at each cardiac cycle was assessed in a population sample of 20 young adults during the maintenance of a quiet up-right posture. Typical patterns of the three components of this force vector were identified. Relevant parameters were selected and submitted to sample statistics. For a number of them, linear correlation with subject-specific parameters was found. The antero-posterior force component was characterised by a triphasic major wave, the peaks of which had values up to 0.40 N. The vertical component showed a repeatable triphasic wave with peak-to-peak values in the range 1.3-3.0 N. The medio-lateral component showed relatively low peak-to-peak values (in the range 0.05-0.10 N). The resultant vector had an amplitude that underwent several oscillations during the cardiac cycle and reached its maximal value in the range 0.6-1.7 N.


Computer Methods and Programs in Biomedicine | 2008

A neural-based remote eye gaze tracker under natural head motion

Diego Torricelli; Silvia Conforto; Maurizio Schmid; Tommaso D'Alessio

A novel approach to view-based eye gaze tracking for human computer interface (HCI) is presented. The proposed method combines different techniques to address the problems of head motion, illumination and usability in the framework of low cost applications. Feature detection and tracking algorithms have been designed to obtain an automatic setup and strengthen the robustness to light conditions. An extensive analysis of neural solutions has been performed to deal with the non-linearity associated with gaze mapping under free-head conditions. No specific hardware, such as infrared illumination or high-resolution cameras, is needed, rather a simple commercial webcam working in visible light spectrum suffices. The system is able to classify the gaze direction of the user over a 15-zone graphical interface, with a success rate of 95% and a global accuracy of around 2 degrees , comparable with the vast majority of existing remote gaze trackers.


Computers in Biology and Medicine | 2011

Early recognition of upper limb motor tasks through accelerometers: real-time implementation of a DTW-based algorithm

Rossana Muscillo; Maurizio Schmid; Silvia Conforto; Tommaso D'Alessio

A new real-time implementation of a Dynamic Time Warping (DTW)-based classification scheme is presented here, and its performance evaluated on experimental data. Nine young adults were requested to perform instances of eight different purposeful movements described in the Wolf Motor Function Test, while wearing a three-axis accelerometer sensor placed on the inner forearm. Results include the correct recognition percentage, as compared to a classification scheme based on the traditional DTW measure, and the recognition percentage as a function of the time elapsed from the beginning of the performed movements. The Real-Time DTW basically performs with the same accuracy of the traditional DTW-based classification scheme (91.5% of correct recognition percentage), a figure that increases to 96.5% if the multidimensional scheme is adopted. Moreover, more than 60% of movements are correctly recognized before their end, thus setting the way for applications in rehabilitation and assistive technologies, where a real-time control scheme is able to interact with the user while the movement is being performed.


international conference of the ieee engineering in medicine and biology society | 2009

Markerless Human Motion Analysis in Gauss–Laguerre Transform Domain: An Application to Sit-To-Stand in Young and Elderly People

Michela Goffredo; Maurizio Schmid; Silvia Conforto; Marco Carli; Alessandro Neri; Tommaso D'Alessio

A markerless computer vision technique specifically designed to track natural elements on the human body surface is presented. The method implements the estimate of translation, rotation, and scaling by means of a maximum likelihood approach carried out in the Gauss-Laguerre transform domain. The approach is particularly suitable for human movement analysis in clinical contexts, where kinematics is at present performed by means of marker-based systems. Specific drawbacks of these latter systems, such as the burden of time for marker placement and the intrinsic intrusive nature, would be removed by the proposed method. Experimental results in terms of tracking performance are obtained by analyzing video sequences capturing the execution of the sit-to-stand task in two groups of young and elderly volunteers. The results are compared with clinical studies that used marker-based systems, and are particularly encouraging for a future extension of the approach to other motor tasks and to predict scores obtained from the physical performance batteries that are widely and regularly used by clinicians and physical therapists.


Journal of Neuroengineering and Rehabilitation | 2005

The development of postural strategies in children: a factorial design study.

Maurizio Schmid; Silvia Conforto; Luisa Lopez; Paolo Renzi; Tommaso D'Alessio

BackgroundThe present study investigates balance control mechanisms, their variations with the absence of visual input, and their development in children from 7 to 11 years old, in order to provide insights on the development of balance control in the pediatric population.MethodsPosturographic data were recorded during 60 s trials administered on a sample population of 148 primary school children while stepping and then quietly standing on a force plate in two different vision conditions: eyes closed and eyes open. The extraction of posturographic parameters on the quiet standing phase of the experiment was preceded by the implementation of an algorithm to identify the settling time after stepping on the force plate. The effect of different conditions on posturographic parameters was tested with a two-way ANOVA (Age × Vision), and the corresponding eyes-closed/eyes-open (Romberg) Ratios underwent a one-way ANOVA.ResultsSeveral posturographic measures were found to be sensitive to testing condition (eyes closed vs. eyes open) and some of them to age and anthropometric parameters. The latter relationship did not explain all the data variability with age. An evident modification of postural strategy was observed between 7 and 11 years old children.ConclusionSimple measures extracted from posturographic signals resulted sensitive to vision and age: data acquired from force plate made it possible to confirm the hypothesis of the development of postural strategies in children as a more mature selection and re-weighting of proprioceptive inputs to postural control in absence of visual input.


IEEE Engineering in Medicine and Biology Magazine | 2001

Extraction of the envelope from surface EMG signals

Tommaso D'Alessio; Silvia Conforto

Electrical signals recorded by means of surface electromyography (SEMG) contain some useful information for a better understanding of strategies underlying human movement. In particular, a great contribution to biomechanic studies may be provided by a correct estimation of the amplitude of SEMG signals that is related to the force exerted by muscles. This information could, in fact, represent an indirect assessment of muscular force obtained without using invasive measurement techniques. This article presents a new fully automatic estimation technique adaptively working on SEMG signal characteristics. The discussion of the theoretical background of the estimator together with a feasibility study demonstrates the usefulness of its application. An example of the application to signals recorded during dynamic protocols is also shown.


Frontiers in Computational Neuroscience | 2013

Feedback of mechanical effectiveness induces adaptations in motor modules during cycling.

Cristiano De Marchis; Maurizio Schmid; Daniele Bibbo; Anna Margherita Castronovo; Tommaso D'Alessio; Silvia Conforto

Recent studies have reported evidence that the motor system may rely on a modular organization, even if this behavior has yet to be confirmed during motor adaptation. The aim of the present study is to investigate the modular motor control mechanisms underlying the execution of pedaling by untrained subjects in different biomechanical conditions. We use the muscle synergies framework to characterize the muscle coordination of 11 subjects pedaling under two different conditions. The first one consists of a pedaling exercise with a strategy freely chosen by the subjects (Preferred Pedaling Technique, PPT), while the second condition constrains the gesture by means of a real time visual feedback of mechanical effectiveness (Effective Pedaling Technique, EPT). Pedal forces, recorded using a pair of instrumented pedals, were used to calculate the Index of Effectiveness (IE). EMG signals were recorded from eight muscles of the dominant leg and Non-negative Matrix Factorization (NMF) was applied for the extraction of muscle synergies. All the synergy vectors, extracted cycle by cycle for each subject, were pooled across subjects and conditions and underwent a 2-dimensional Sammons non-linear mapping. Seven representative clusters were identified on the Sammons projection, and the corresponding eight-dimensional synergy vectors were used to reconstruct the repertoire of muscle activation for all subjects and all pedaling conditions (VAF > 0.8 for each individual muscle pattern). Only 5 out of the 7 identified modules were used by the subjects during the PPT pedaling condition, while 2 additional modules were found specific for the pedaling condition EPT. The temporal recruitment of three identified modules was highly correlated with IE. The structure of the identified modules was found similar to that extracted in other studies of human walking, partly confirming the existence of shared and task specific muscle synergies, and providing further evidence on the modularity of the motor system.


international conference of the ieee engineering in medicine and biology society | 2010

Multimodal BCI-mediated FES suppression of pathological tremor

Eduardo Rocon; J. A. Gallego; L. Barrios; A. R. Victoria; Jaime Ibáñez; Dario Farina; Francesco Negro; Jacob Lund Dideriksen; Silvia Conforto; Tommaso D'Alessio; Giacomo Severini; J.M. Belda-Lois; Giuliana Grimaldi; Mario Manto; J.L. Pons

Tremor constitutes the most common movement disorder; in fact 14.5% of population between 50 to 89 years old suffers from it. Moreover, 65% of patients with upper limb tremor report disability when performing their activities of daily living (ADL). Unfortunately, 25% of patients do not respond to drugs or neurosurgery. In this regard, TREMOR project proposes functional compensation of upper limb tremors with a soft wearable robot that applies biomechanical loads through functional electrical stimulation (FES) of muscles. This wearable robot is driven by a Brain Neural Computer Interface (BNCI). This paper presents a multimodal BCI to assess generation, transmission and execution of both volitional and tremorous movements based on electroencephalography (EEG), electromyography (EMG) and inertial sensors (IMUs). These signals are combined to obtain: 1) the intention to perform a voluntary movement from cortical activity (EEG), 2) tremor onset, and an estimation of tremor frequency from muscle activation (EMG), and 3) instantaneous tremor amplitude and frequency from kinematic measurements (IMUs). Integration of this information will provide control signals to drive the FES-based wearable robot.

Collaboration


Dive into the Tommaso D'Alessio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge