Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tommaso Jucker is active.

Publication


Featured researches published by Tommaso Jucker.


Science | 2016

Positive biodiversity-productivity relationship predominant in global forests.

Jingjing Liang; Thomas W. Crowther; Nicolas Picard; Susan K. Wiser; Mo Zhou; Giorgio Alberti; Ernst-Detlef Schulze; A. David McGuire; Fabio Bozzato; Hans Pretzsch; Sergio de-Miguel; Alain Paquette; Bruno Hérault; Michael Scherer-Lorenzen; Christopher B. Barrett; Henry B. Glick; Geerten M. Hengeveld; Gert-Jan Nabuurs; Sebastian Pfautsch; Hélder Viana; Alexander C. Vibrans; Christian Ammer; Peter Schall; David David Verbyla; Nadja M. Tchebakova; Markus Fischer; James V. Watson; Han Y. H. Chen; Xiangdong Lei; Mart-Jan Schelhaas

Global biodiversity and productivity The relationship between biodiversity and ecosystem productivity has been explored in detail in herbaceous vegetation, but patterns in forests are far less well understood. Liang et al. have amassed a global forest data set from >770,000 sample plots in 44 countries. A positive and consistent relationship can be discerned between tree diversity and ecosystem productivity at landscape, country, and ecoregion scales. On average, a 10% loss in biodiversity leads to a 3% loss in productivity. This means that the economic value of maintaining biodiversity for the sake of global forest productivity is more than fivefold greater than global conservation costs. Science, this issue p. 196 Global forest inventory records suggest that biodiversity loss would result in a decline in forest productivity worldwide. INTRODUCTION The biodiversity-productivity relationship (BPR; the effect of biodiversity on ecosystem productivity) is foundational to our understanding of the global extinction crisis and its impacts on the functioning of natural ecosystems. The BPR has been a prominent research topic within ecology in recent decades, but it is only recently that we have begun to develop a global perspective. RATIONALE Forests are the most important global repositories of terrestrial biodiversity, but deforestation, forest degradation, climate change, and other factors are threatening approximately one half of tree species worldwide. Although there have been substantial efforts to strengthen the preservation and sustainable use of forest biodiversity throughout the globe, the consequences of this diversity loss pose a major uncertainty for ongoing international forest management and conservation efforts. The forest BPR represents a critical missing link for accurate valuation of global biodiversity and successful integration of biological conservation and socioeconomic development. Until now, there have been limited tree-based diversity experiments, and the forest BPR has only been explored within regional-scale observational studies. Thus, the strength and spatial variability of this relationship remains unexplored at a global scale. RESULTS We explored the effect of tree species richness on tree volume productivity at the global scale using repeated forest inventories from 777,126 permanent sample plots in 44 countries containing more than 30 million trees from 8737 species spanning most of the global terrestrial biomes. Our findings reveal a consistent positive concave-down effect of biodiversity on forest productivity across the world, showing that a continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The BPR shows considerable geospatial variation across the world. The same percentage of biodiversity loss would lead to a greater relative (that is, percentage) productivity decline in the boreal forests of North America, Northeastern Europe, Central Siberia, East Asia, and scattered regions of South-central Africa and South-central Asia. In the Amazon, West and Southeastern Africa, Southern China, Myanmar, Nepal, and the Malay Archipelago, however, the same percentage of biodiversity loss would lead to greater absolute productivity decline. CONCLUSION Our findings highlight the negative effect of biodiversity loss on forest productivity and the potential benefits from the transition of monocultures to mixed-species stands in forestry practices. The BPR we discover across forest ecosystems worldwide corresponds well with recent theoretical advances, as well as with experimental and observational studies on forest and nonforest ecosystems. On the basis of this relationship, the ongoing species loss in forest ecosystems worldwide could substantially reduce forest productivity and thereby forest carbon absorption rate to compromise the global forest carbon sink. We further estimate that the economic value of biodiversity in maintaining commercial forest productivity alone is


Ecology Letters | 2014

Stabilizing effects of diversity on aboveground wood production in forest ecosystems: linking patterns and processes

Tommaso Jucker; Olivier Bouriaud; Daniel Avacaritei; David A. Coomes

166 billion to


Functional Ecology | 2015

Crown plasticity enables trees to optimize canopy packing in mixed-species forests

Tommaso Jucker; Olivier Bouriaud; David A. Coomes

490 billion per year. Although representing only a small percentage of the total value of biodiversity, this value is two to six times as much as it would cost to effectively implement conservation globally. These results highlight the necessity to reassess biodiversity valuation and the potential benefits of integrating and promoting biological conservation in forest resource management and forestry practices worldwide. Global effect of tree species diversity on forest productivity. Ground-sourced data from 777,126 global forest biodiversity permanent sample plots (dark blue dots, left), which cover a substantial portion of the global forest extent (white), reveal a consistent positive and concave-down biodiversity-productivity relationship across forests worldwide (red line with pink bands representing 95% confidence interval, right). The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining commercial forest productivity alone—US


Journal of Ecology | 2014

Competition for light and water play contrasting roles in driving diversity-productivity relationships in Iberian forests

Tommaso Jucker; Olivier Bouriaud; Daniel Avacaritei; Iulian Dănilă; Gabriel Duduman; Fernando Valladares; David A. Coomes

166 billion to 490 billion per year according to our estimation—is more than twice what it would cost to implement effective global conservation. This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities.


Global Change Biology | 2017

Allometric equations for integrating remote sensing imagery into forest monitoring programmes

Tommaso Jucker; John P. Caspersen; Jérôme Chave; Cécile Antin; Nicolas Barbier; Frans Bongers; Michele Dalponte; Karin Y. van Ewijk; David I. Forrester; Matthias Haeni; Steven I. Higgins; Robert J. Holdaway; Yoshiko Iida; Craig G. Lorimer; Peter L. Marshall; Stéphane Momo; Glenn R. Moncrieff; Pierre Ploton; Lourens Poorter; Kassim Abd Rahman; Michael Schlund; Bonaventure Sonké; Frank J. Sterck; Anna T. Trugman; Vladimir Usoltsev; Mark C. Vanderwel; Peter Waldner; Beatrice Wedeux; Christian Wirth; Hannsjörg Wöll

Both theory and evidence suggest that diversity stabilises productivity in herbaceous plant communities through a combination of overyielding, species asynchrony and favourable species interactions. However, whether these same processes also promote stability in forest ecosystems has never been tested. Using tree ring data from permanent forest plots across Europe, we show that aboveground wood production is inherently more stable through time in mixed-species forests. Faster rates of wood production (i.e. overyielding), decreased year-to-year variation in productivity through asynchronous responses of species to climate, and greater temporal stability in the growth rates of individual tree species all contributed strongly to stabilising productivity in mixed stands. Together, these findings reveal the central role of diversity in stabilising productivity in forests, and bring us closer to understanding the processes which enable diverse forests to remain productive under a wide range of environmental conditions.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Biotic homogenization can decrease landscape-scale forest multifunctionality

Fons van der Plas; Peter Manning; Santiago Soliveres; Eric Allan; Michael Scherer-Lorenzen; Kris Verheyen; Christian Wirth; Miguel A. Zavala; Evy Ampoorter; Lander Baeten; Luc Barbaro; Jürgen Bauhus; Raquel Benavides; Adam Benneter; Damien Bonal; Olivier Bouriaud; Helge Bruelheide; Filippo Bussotti; Monique Carnol; Bastien Castagneyrol; Yohan Charbonnier; David A. Coomes; Andrea Coppi; Christina C. Bestias; Seid Muhie Dawud; Hans De Wandeler; Timo Domisch; Leena Finér; Arthur Gessler; André Granier

Summary 1. It has been suggested that diverse forests utilize canopy space more efficiently than speciespoor ones, as mixing species with complementary architectural and physiological traits allows trees to pack more densely. However, whether positive canopy packing–diversity relationships are a general feature of forests remains unclear. 2. Using crown allometric data collected for 12 939 trees from permanent forest plots across Europe, we test (i) whether diversity promotes canopy packing across forest types and (ii) whether increased canopy packing occurs primarily through vertical stratification of tree crowns or as a result of intraspecific plasticity in crown morphology. 3. We found that canopy packing efficiency increased markedly in response to species richness across a range of forest types and species combinations. Positive canopy packing–diversity relationships were primarily driven by the fact that trees growing in mixture had sizably larger crowns (38% on average) than those in monoculture. 4. The ability of trees to plastically adapt the shape and size of their crowns in response to changes in local competitive environment is critical in allowing mixed-species forests to optimize the use of canopy space. By promoting the development of denser and more structurally complex canopies, species mixing can strongly impact nutrient cycling and storage in forest ecosystems.


Ecosystems | 2014

Does Drought Influence the Relationship Between Biodiversity and Ecosystem Functioning in Boreal Forests

Charlotte Grossiord; André Granier; Arthur Gessler; Tommaso Jucker; Damien Bonal

Summary Mixed-species forests generally sequester and store more carbon in above-ground woody biomass compared to species-poor systems. However, the mechanisms driving the positive relationship between diversity and above-ground wood production (AWP) remain unclear. We investigate the role of competition for light and water as possible sources of complementarity among Iberian pine and oak species. Using tree core data from permanent plots, we test the hypotheses that (i) contrasting abilities of pines and oaks to tolerate shade will promote AWP in mixtures, while (ii) drought stress results in less room for complementarity. We found that pine species receive more light, develop larger crowns and grow 138–155% faster when in mixture with oaks. However, this positive effect of species mixing on growth was severely reduced under drought conditions due to increased competition for water with neighbouring oaks. In contrast to pines, oak trees were less responsive to mixing, primarily as a result of their ability to tolerate shade and water shortage. Mixed pine-oak forests produce an average 48% more above-ground woody biomass compared to monocultures each year. However, the magnitude of the diversity effect on AWP fluctuates with time, decreasing noticeably in strength during drought years. Synthesis. Complementary light use strategies among neighbouring trees are critical in explaining why above-ground wood production (AWP) increases in mixed-species stands. In contrast, drought causes trees in mixture to compete more fiercely for below-ground resources, leaving less room for complementarity and causing positive diversity effects to lessen in strength. Together, these two mechanisms provide much needed context for AWP–diversity relationships in Mediterranean forests. Whether or not managing for mixed pine-oak forests proves to be beneficial for AWP is likely to depend on how climate changes in the Iberian Peninsula.


Journal of Ecology | 2016

Climate modulates the effects of tree diversity on forest productivity

Tommaso Jucker; Daniel Avăcăriței; Ionuț Bărnoaiea; Gabriel Duduman; Olivier Bouriaud; David A. Coomes

Abstract Remote sensing is revolutionizing the way we study forests, and recent technological advances mean we are now able – for the first time – to identify and measure the crown dimensions of individual trees from airborne imagery. Yet to make full use of these data for quantifying forest carbon stocks and dynamics, a new generation of allometric tools which have tree height and crown size at their centre are needed. Here, we compile a global database of 108753 trees for which stem diameter, height and crown diameter have all been measured, including 2395 trees harvested to measure aboveground biomass. Using this database, we develop general allometric models for estimating both the diameter and aboveground biomass of trees from attributes which can be remotely sensed – specifically height and crown diameter. We show that tree height and crown diameter jointly quantify the aboveground biomass of individual trees and find that a single equation predicts stem diameter from these two variables across the worlds forests. These new allometric models provide an intuitive way of integrating remote sensing imagery into large‐scale forest monitoring programmes and will be of key importance for parameterizing the next generation of dynamic vegetation models.


Ecology Letters | 2017

Biodiversity and ecosystem functioning relations in European forests depend on environmental context

Sophia Ratcliffe; Christian Wirth; Tommaso Jucker; Fons van der Plas; Michael Scherer-Lorenzen; Kris Verheyen; Eric Allan; Raquel Benavides; Helge Bruelheide; Bettina Ohse; Alain Paquette; Evy Ampoorter; Cristina C. Bastias; Jürgen Bauhus; Damien Bonal; Olivier Bouriaud; Filippo Bussotti; Monique Carnol; Bastien Castagneyrol; Ewa Chećko; Seid Muhie Dawud; Hans De Wandeler; Timo Domisch; Leena Finér; Markus Fischer; Mariangela N. Fotelli; Arthur Gessler; André Granier; Charlotte Grossiord; Virginie Guyot

Significance Numerous studies have demonstrated the importance of biodiversity in maintaining multiple ecosystem functions and services (multifunctionality) at local spatial scales, but it is unknown whether similar relationships are found at larger spatial scales in real-world landscapes. Here, we show, for the first time to our knowledge, that biodiversity can also be important for multifunctionality at larger spatial scales in European forest landscapes. Both high local (α-) diversity and a high turnover in species composition between locations (high β-diversity) were found to be potentially important drivers of ecosystem multifunctionality. Our study provides evidence that it is important to conserve the landscape-scale biodiversity that is being eroded by biotic homogenization if ecosystem multifunctionality is to be maintained. Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality.


Archive | 2013

Passive Recovery of Mediterranean Coastal Dunes Following Limitations to Human Trampling

Alicia Teresa Rosario Acosta; Tommaso Jucker; Irene Prisco; Riccardo Santoro

In mixed forests, interactions among species influence ecosystem functioning but environmental conditions also play an important role in shaping relationships between biodiversity and ecosystem functioning. In the context of climate change, the carbon and water balance in pure versus mixed forest stands may be differentially influenced by changing soil water availability. To test this hypothesis, we compared the influence of biodiversity on stand water use efficiency (WUES) in boreal forests between wet and dry years. We assessed the carbon isotope composition (δ13C) of tree rings in Betula pendula, Pinus sylvestris, and Picea abies growing in pure versus mixed stands. In addition, we tested whether differences in WUES affected patterns of stand basal area increment (BAIS). No biodiversity effect was found for stand δ13C (δ13CS) during the wet year. However, there was a significant increase in δ13CS between the wet and the dry year and a significant effect of biodiversity on δ13CS in the dry year. The increase in δ13CS in mixed stands was associated with both selection and complementarity effects. Although BAIS decreased significantly in the dry year, changes in δ13CS did not translate into variations in BAIS along the biodiversity gradient. Our results confirmed that the physiological response of boreal forest ecosystems to changing soil water conditions is influenced by species interactions and that during dry growing seasons, species interactions in mixed stands can lead to lower soil moisture availability. This illustrates that biodiversity effects can also be negative in mixed stands in the sense that soil resources can be more intensively exhausted. Overall, our results confirm that in boreal forests, the biodiversity–ecosystem functioning relationship depends on local environmental conditions.

Collaboration


Dive into the Tommaso Jucker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivier Bouriaud

Ştefan cel Mare University of Suceava

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bastien Castagneyrol

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marta Carboni

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge