Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tommaso Macrì is active.

Publication


Featured researches published by Tommaso Macrì.


Nature | 2016

Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models

Henning Labuhn; Daniel Barredo; Sylvain Ravets; Sylvain de Léséleuc; Tommaso Macrì; Thierry Lahaye; Antoine Browaeys

Spin models are the prime example of simplified manybody Hamiltonians used to model complex, real-world strongly correlated materials. However, despite their simplified character, their dynamics often cannot be simulated exactly on classical computers as soon as the number of particles exceeds a few tens. For this reason, the quantum simulation of spin Hamiltonians using the tools of atomic and molecular physics has become very active over the last years, using ultracold atoms or molecules in optical lattices, or trapped ions. All of these approaches have their own assets, but also limitations. Here, we report on a novel platform for the study of spin systems, using individual atoms trapped in two-dimensional arrays of optical microtraps with arbitrary geometries, where filling fractions range from 60 to 100% with exact knowledge of the initial configuration. When excited to Rydberg D-states, the atoms undergo strong interactions whose anisotropic character opens exciting prospects for simulating exotic matter. We illustrate the versatility of our system by studying the dynamics of an Ising-like spin-1/2 system in a transverse field with up to thirty spins, for a variety of geometries in one and two dimensions, and for a wide range of interaction strengths. For geometries where the anisotropy is expected to have small effects we find an excellent agreement with ab-initio simulations of the spin-1/2 system, while for strongly anisotropic situations the multilevel structure of the D-states has a measurable influence. Our findings establish arrays of single Rydberg atoms as a versatile platform for the study of quantum magnetism.Spin models are the prime example of simplified many-body Hamiltonians used to model complex, strongly correlated real-world materials. However, despite the simplified character of such models, their dynamics often cannot be simulated exactly on classical computers when the number of particles exceeds a few tens. For this reason, quantum simulation of spin Hamiltonians using the tools of atomic and molecular physics has become a very active field over the past years, using ultracold atoms or molecules in optical lattices, or trapped ions. All of these approaches have their own strengths and limitations. Here we report an alternative platform for the study of spin systems, using individual atoms trapped in tunable two-dimensional arrays of optical microtraps with arbitrary geometries, where filling fractions range from 60 to 100 per cent. When excited to high-energy Rydberg D states, the atoms undergo strong interactions whose anisotropic character opens the way to simulating exotic matter. We illustrate the versatility of our system by studying the dynamics of a quantum Ising-like spin-1/2 system in a transverse field with up to 30 spins, for a variety of geometries in one and two dimensions, and for a wide range of interaction strengths. For geometries where the anisotropy is expected to have small effects on the dynamics, we find excellent agreement with ab initio simulations of the spin-1/2 system, while for strongly anisotropic situations the multilevel structure of the D states has a measurable influence. Our findings establish arrays of single Rydberg atoms as a versatile platform for the study of quantum magnetism.


Physical Review A | 2016

Loschmidt echo for quantum metrology

Tommaso Macrì; Augusto Smerzi; Luca Pezzè

We propose a versatile Loschmidt echo protocol to detect and quantify multiparticle entanglement. It allows us to extract the quantum Fisher information for arbitrary pure states, and finds direct application in quantum metrology. In particular, the protocol applies to states that are generally difficult to characterize, as non-Gaussian states, and states that are not symmetric under particle exchange. We focus on atomic systems, including trapped ions, polar molecules, and Rydberg atoms, where entanglement is generated dynamically via long-range interaction, and show that the protocol is stable against experimental detection errors.


Scientific Reports | 2017

Equation of state and self-bound droplet in Rabi-coupled Bose mixtures

Alberto Cappellaro; Tommaso Macrì; Giovanni F. Bertacco; Luca Salasnich

Laser induced transitions between internal states of atoms have been playing a fundamental role to manipulate atomic clouds for many decades. In absence of interactions each atom behaves independently and their coherent quantum dynamics is described by the Rabi model. Since the experimental observation of Bose condensation in dilute gases, static and dynamical properties of multicomponent quantum gases have been extensively investigated. Moreover, at very low temperatures quantum fluctuations crucially affect the equation of state of many-body systems. Here we study the effects of quantum fluctuations on a Rabi-coupled two-component Bose gas of interacting alkali atoms. The divergent zero-point energy of gapless and gapped elementary excitations of the uniform system is properly regularized obtaining a meaningful analytical expression for the beyond-mean-field equation of state. In the case of attractive inter-particle interaction we show that the quantum pressure arising from Gaussian fluctuations can prevent the collapse of the mixture with the creation of a self-bound droplet. We characterize the droplet phase and discover an energetic instability above a critical Rabi frequency provoking the evaporation of the droplet. Finally, we suggest an experiment to observe such quantum droplets using Rabi-coupled internal states of K39 atoms.


Physical Review A | 2010

Dipole oscillations in fermionic mixtures

Silvia Chiacchiera; Tommaso Macrì; Andrea Trombettoni

We study dipole oscillations in a general fermionic mixture. Starting from the Boltzmann equation, we classify the different solutions in the parameter space through the number of real eigenvalues of the small oscillations matrix. We discuss how this number can be computed using the Sturm algorithm and its relation with the properties of the Laplace transform of the experimental quantities. After considering two components in harmonic potentials having different trapping frequencies, we study dipole oscillations in three-component mixtures. Explicit computations are done for realistic experimental setups using the classical Boltzmann equation without intraspecies interactions. A brief discussion of the application of this classification to general collective oscillations is also presented.


arXiv: Quantum Gases | 2015

A highly-tunable quantum simulator of spin systems using two-dimensional arrays of single Rydberg atoms

Henning Labuhn; Daniel Barredo; Sylvain Ravets; Sylvain de Léséleuc; Tommaso Macrì; Thierry Lahaye; Antoine Browaeys

Spin models are the prime example of simplified manybody Hamiltonians used to model complex, real-world strongly correlated materials. However, despite their simplified character, their dynamics often cannot be simulated exactly on classical computers as soon as the number of particles exceeds a few tens. For this reason, the quantum simulation of spin Hamiltonians using the tools of atomic and molecular physics has become very active over the last years, using ultracold atoms or molecules in optical lattices, or trapped ions. All of these approaches have their own assets, but also limitations. Here, we report on a novel platform for the study of spin systems, using individual atoms trapped in two-dimensional arrays of optical microtraps with arbitrary geometries, where filling fractions range from 60 to 100% with exact knowledge of the initial configuration. When excited to Rydberg D-states, the atoms undergo strong interactions whose anisotropic character opens exciting prospects for simulating exotic matter. We illustrate the versatility of our system by studying the dynamics of an Ising-like spin-1/2 system in a transverse field with up to thirty spins, for a variety of geometries in one and two dimensions, and for a wide range of interaction strengths. For geometries where the anisotropy is expected to have small effects we find an excellent agreement with ab-initio simulations of the spin-1/2 system, while for strongly anisotropic situations the multilevel structure of the D-states has a measurable influence. Our findings establish arrays of single Rydberg atoms as a versatile platform for the study of quantum magnetism.Spin models are the prime example of simplified many-body Hamiltonians used to model complex, strongly correlated real-world materials. However, despite the simplified character of such models, their dynamics often cannot be simulated exactly on classical computers when the number of particles exceeds a few tens. For this reason, quantum simulation of spin Hamiltonians using the tools of atomic and molecular physics has become a very active field over the past years, using ultracold atoms or molecules in optical lattices, or trapped ions. All of these approaches have their own strengths and limitations. Here we report an alternative platform for the study of spin systems, using individual atoms trapped in tunable two-dimensional arrays of optical microtraps with arbitrary geometries, where filling fractions range from 60 to 100 per cent. When excited to high-energy Rydberg D states, the atoms undergo strong interactions whose anisotropic character opens the way to simulating exotic matter. We illustrate the versatility of our system by studying the dynamics of a quantum Ising-like spin-1/2 system in a transverse field with up to 30 spins, for a variety of geometries in one and two dimensions, and for a wide range of interaction strengths. For geometries where the anisotropy is expected to have small effects on the dynamics, we find excellent agreement with ab initio simulations of the spin-1/2 system, while for strongly anisotropic situations the multilevel structure of the D states has a measurable influence. Our findings establish arrays of single Rydberg atoms as a versatile platform for the study of quantum magnetism.


Nature | 2015

Realizing quantum Ising models in tunable two-dimensional arrays of single Rydberg atoms

Henning Labuhn; Daniel Barredo; Sylvain Ravets; Sylvain de Léséleuc; Tommaso Macrì; Thierry Lahaye; Antoine Browaeys

Spin models are the prime example of simplified manybody Hamiltonians used to model complex, real-world strongly correlated materials. However, despite their simplified character, their dynamics often cannot be simulated exactly on classical computers as soon as the number of particles exceeds a few tens. For this reason, the quantum simulation of spin Hamiltonians using the tools of atomic and molecular physics has become very active over the last years, using ultracold atoms or molecules in optical lattices, or trapped ions. All of these approaches have their own assets, but also limitations. Here, we report on a novel platform for the study of spin systems, using individual atoms trapped in two-dimensional arrays of optical microtraps with arbitrary geometries, where filling fractions range from 60 to 100% with exact knowledge of the initial configuration. When excited to Rydberg D-states, the atoms undergo strong interactions whose anisotropic character opens exciting prospects for simulating exotic matter. We illustrate the versatility of our system by studying the dynamics of an Ising-like spin-1/2 system in a transverse field with up to thirty spins, for a variety of geometries in one and two dimensions, and for a wide range of interaction strengths. For geometries where the anisotropy is expected to have small effects we find an excellent agreement with ab-initio simulations of the spin-1/2 system, while for strongly anisotropic situations the multilevel structure of the D-states has a measurable influence. Our findings establish arrays of single Rydberg atoms as a versatile platform for the study of quantum magnetism.Spin models are the prime example of simplified many-body Hamiltonians used to model complex, strongly correlated real-world materials. However, despite the simplified character of such models, their dynamics often cannot be simulated exactly on classical computers when the number of particles exceeds a few tens. For this reason, quantum simulation of spin Hamiltonians using the tools of atomic and molecular physics has become a very active field over the past years, using ultracold atoms or molecules in optical lattices, or trapped ions. All of these approaches have their own strengths and limitations. Here we report an alternative platform for the study of spin systems, using individual atoms trapped in tunable two-dimensional arrays of optical microtraps with arbitrary geometries, where filling fractions range from 60 to 100 per cent. When excited to high-energy Rydberg D states, the atoms undergo strong interactions whose anisotropic character opens the way to simulating exotic matter. We illustrate the versatility of our system by studying the dynamics of a quantum Ising-like spin-1/2 system in a transverse field with up to 30 spins, for a variety of geometries in one and two dimensions, and for a wide range of interaction strengths. For geometries where the anisotropy is expected to have small effects on the dynamics, we find excellent agreement with ab initio simulations of the spin-1/2 system, while for strongly anisotropic situations the multilevel structure of the D states has a measurable influence. Our findings establish arrays of single Rydberg atoms as a versatile platform for the study of quantum magnetism.


Physical Review A | 2017

Excitations and stability of weakly interacting Bose gases with multibody interactions

Danny Laghi; Tommaso Macrì; Andrea Trombettoni

We consider weakly interacting bosonic gases with local and non-local multi-body interactions. By using the Bogoliubov approximation, we first investigate contact interactions, studying the case in which the interparticle potential can be written as a sum of N-body {\delta}-interactions, and then considering general contact potentials. Results for the quasi-particle spectrum and the stability are presented. We then examine non-local interactions, focusing on two different cases of 3-body non-local interactions. Our results are used for systems with 2- and 3-body {\delta}-interactions and applied in the homogeneous limit with the values given in [11]. Finally, the effect of conservative 3-body terms in dipolar systems and soft-core potentials (that can be simulated with Rydberg dressed atoms) is also studied.


Journal of Physics A | 2016

Probing Klein tunnelling through quantum quenches

Leda Bucciantini; Spyros Sotiriadis; Tommaso Macrì

We study the interplay between an inhomogeneous quantum quench of the external potential in a system of relativistic fermions in one-dimension and the well-known Klein tunneling. We find that the large time evolution is characterized by particle production at a constant rate which we derive analytically. The produced particles can be physically interpreted according to a semiclassical picture and the state reached in the long time limit can be classified as a non-equilibrium-steady-state. Such a quantum quench can be used in order to observe macroscopic effects of Klein tunneling in transport, with potential implementations with current experimental setups.


Physical Review D | 2018

Two-dimensional Yukawa interactions from nonlocal Proca quantum electrodynamics

Van Sérgio Alves; Leandro O. Nascimento; Gabriel C. Magalhães; E. C. Marino; Tommaso Macrì

We derive two versions of an effective model to describe dynamical effects of the Yukawa interaction among Dirac electrons in the plane. Such short-range interaction is obtained by introducing a mass term for the intermediate particle, which may be either scalar or an abelian gauge field, both of them in (3+1) dimensions. Thereafter, we consider that the matter field propagates only in (2+1) dimensions, whereas the bosonic field is free to propagate out of the plane. Within these assumptions, we apply a mechanism for dimensional reduction, which yields an effective model in (2+1) dimensions. In particular, for the gauge-field case, we use the Stueckelberg mechanism in order to preserve gauge invariance. We refer to this version as nonlocal-Proca quantum electrodynamics (NPQED). For both scalar and gauge cases, the effective models reproduce the usual


Physical Review A | 2017

Thermalization of the Lipkin-Meshkov-Glick model in blackbody radiation

Tommaso Macrì; Massimo Ostilli; Carlo Presilla

e^{-m r}/r

Collaboration


Dive into the Tommaso Macrì's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Trombettoni

International School for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antoine Browaeys

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Daniel Barredo

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Henning Labuhn

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Sylvain Ravets

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlo Presilla

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

E. C. Marino

Federal University of Rio de Janeiro

View shared research outputs
Researchain Logo
Decentralizing Knowledge