Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tommaso Melodia is active.

Publication


Featured researches published by Tommaso Melodia.


Computer Networks | 2007

A survey on wireless multimedia sensor networks

Ian F. Akyildiz; Tommaso Melodia; Kaushik R. Chowdhury

The availability of low-cost hardware such as CMOS cameras and microphones has fostered the development of Wireless Multimedia Sensor Networks (WMSNs), i.e., networks of wirelessly interconnected devices that are able to ubiquitously retrieve multimedia content such as video and audio streams, still images, and scalar sensor data from the environment. In this paper, the state of the art in algorithms, protocols, and hardware for wireless multimedia sensor networks is surveyed, and open research issues are discussed in detail. Architectures for WMSNs are explored, along with their advantages and drawbacks. Currently off-the-shelf hardware as well as available research prototypes for WMSNs are listed and classified. Existing solutions and open research issues at the application, transport, network, link, and physical layers of the communication protocol stack are investigated, along with possible cross-layer synergies and optimizations.


ad hoc networks | 2005

Underwater acoustic sensor networks: research challenges

Ian F. Akyildiz; Dario Pompili; Tommaso Melodia

Underwater sensor nodes will find applications in oceanographic data collection, pollution monitoring, offshore exploration, disaster prevention, assisted navigation and tactical surveillance applications. Moreover, unmanned or autonomous underwater vehicles (UUVs, AUVs), equipped with sensors, will enable the exploration of natural undersea resources and gathering of scientific data in collaborative monitoring missions. Underwater acoustic networking is the enabling technology for these applications. Underwater networks consist of a variable number of sensors and vehicles that are deployed to perform collaborative monitoring tasks over a given area. In this paper, several fundamental key aspects of underwater acoustic communications are investigated. Different architectures for two-dimensional and three-dimensional underwater sensor networks are discussed, and the characteristics of the underwater channel are detailed. The main challenges for the development of efficient networking solutions posed by the underwater environment are detailed and a cross-layer approach to the integration of all communication functionalities is suggested. Furthermore, open research issues are discussed and possible solution approaches are outlined. � 2005 Published by Elsevier B.V.


IEEE Wireless Communications | 2007

Wireless multimedia sensor networks: A survey

Ian F. Akyildiz; Tommaso Melodia; Kaushik R. Chowdury

In recent years, the growing interest in the wireless sensor network (WSN) has resulted in thousands of peer-reviewed publications. Most of this research is concerned with scalar sensor networks that measure physical phenomena, such as temperature, pressure, humidity, or location of objects that can be conveyed through low-bandwidth and delay-tolerant data streams. Recently, the focus is shifting toward research aimed at revisiting the sensor network paradigm to enable delivery of multimedia content, such as audio and video streams and still images, as well as scalar data. This effort will result in distributed, networked systems, referred to in this paper as wireless multimedia sensor networks (WMSNs). This article discusses the state of the art and the major research challenges in architectures, algorithms, and protocols for wireless multimedia sensor networks. Existing solutions at the physical, link, network, transport, and application layers of the communication protocol stack are investigated. Finally, fundamental open research issues are discussed, and future research trends in this area are outlined.


ACM Sigbed Review | 2004

Challenges for efficient communication in underwater acoustic sensor networks

Ian F. Akyildiz; Dario Pompili; Tommaso Melodia

Ocean bottom sensor nodes can be used for oceanographic data collection, pollution monitoring, offshore exploration and tactical surveillance applications. Moreover, Unmanned or Autonomous Underwater Vehicles (UUVs, AUVs), equipped with sensors, will find application in exploration of natural undersea resources and gathering of scientific data in collaborative monitoring missions. Underwater acoustic networking is the enabling technology for these applications. Underwater Networks consist of a variable number of sensors and vehicles that are deployed to perform collaborative monitoring tasks over a given area.In this paper, several fundamental key aspects of underwater acoustic communications are investigated. Different architectures for two-dimensional and three-dimensional underwater sensor networks are discussed, and the underwater channel is characterized. The main challenges for the development of efficient networking solutions posed by the underwater environment are detailed at all layers of the protocol stack. Furthermore, open research issues are discussed and possible solution approaches are outlined.


Proceedings of the IEEE | 2008

Wireless Multimedia Sensor Networks: Applications and Testbeds

Ian F. Akyildiz; Tommaso Melodia; Kaushik R. Chowdhury

The availability of low-cost hardware is enabling the development of wireless multimedia sensor networks (WMSNs), i.e., networks of resource-constrained wireless devices that can retrieve multimedia content such as video and audio streams, still images, and scalar sensor data from the environment. In this paper, ongoing research on prototypes of multimedia sensors and their integration into testbeds for experimental evaluation of algorithms and protocols for WMSNs are described. Furthermore, open research issues and future research directions, both at the device level and at the testbed level, are discussed. This paper is intended to be a resource for researchers interested in advancing the state-of-the-art in experimental research on wireless multimedia sensor networks.


acm/ieee international conference on mobile computing and networking | 2006

State-of-the-art in protocol research for underwater acoustic sensor networks

Ian F. Akyildiz; Dario Pompili; Tommaso Melodia

In this paper, architectures for two-dimensional and three-dimensional underwater sensor networks are discussed. A detailed overview on the current solutions for medium access control, network, and transport layer protocols are given and open research issues are discussed.


acm/ieee international conference on mobile computing and networking | 2006

Routing algorithms for delay-insensitive and delay-sensitive applications in underwater sensor networks

Dario Pompili; Tommaso Melodia; Ian F. Akyildiz

Underwater sensor networks consist of sensors and vehicles deployed to perform collaborative monitoring tasks over a given region. Underwater sensor networks will find applications in oceano-graphic data collection, pollution monitoring, offshore exploration, disaster prevention, assisted navigation, tactical surveillance, and mine reconnaissance. Underwater acoustic networking is the enabling technology for these applications. In this paper, an architecture for three-dimensional underwater sensor networks is considered, and a model characterizing the acoustic channel utilization efficiency is introduced, which allows investigating some fundamental characteristics of the underwater environment. In particular, the model allows setting the optimal packet size for underwater communications given monitored volume, density of the sensor network, and application requirements. Moreover, the problem of data gathering is investigated at the network layer by considering the cross-layer interactions between the routing functions and the characteristics of the underwater acoustic channel. Two distributed routing algorithms are introduced for delay-insensitive and delay-sensitive applications. The proposed solutions allow each node to select its next hop, with the objective of minimizing the energy consumption taking the varying condition of the underwater channel and the different application requirements into account. The proposed routing solutions are shown to achieve the performance targets by means of simulation.


IEEE Transactions on Mobile Computing | 2007

Communication and Coordination in Wireless Sensor and Actor Networks

Tommaso Melodia; Dario Pompili; Vehbi Cagri Gungor; Ian F. Akyildiz

In this paper, coordination and communication problems in wireless sensor and actor networks (WSANs) are jointly addressed in a unifying framework. A sensor-actor coordination model is proposed based on an event-driven partitioning paradigm. Sensors are partitioned into different sets, and each set is constituted by a data-delivery tree associated with a different actor. The optimal solution for the partitioning strategy is determined by mathematical programming, and a distributed solution is proposed. In addition, a new model for the actor-actor coordination problem is introduced. The actor coordination is formulated as a task assignment optimization problem for a class of coordination problems in which the area to be acted upon needs to be optimally split among different actors. An auction-based distributed solution of the problem is also presented. Performance evaluation shows how global network objectives, such as compliance with real-time constraints and minimum energy consumption, can be achieved in the proposed framework with simple interactions between sensors and actors that are suitable for large-scale networks of energy-constrained devices.


IEEE Transactions on Vehicular Technology | 2010

Cross-Layer Routing and Dynamic Spectrum Allocation in Cognitive Radio Ad Hoc Networks

Lei Ding; Tommaso Melodia; Stella N. Batalama; John D. Matyjas; Michael J. Medley

Throughput maximization is one of the main challenges in cognitive radio ad hoc networks, where the availability of local spectrum resources may change from time to time and hop by hop. For this reason, a cross-layer opportunistic spectrum access and dynamic routing algorithm for cognitive radio networks is proposed, which is called the routing and dynamic spectrum-allocation (ROSA) algorithm. Through local control actions, ROSA aims to maximize the network throughput by performing joint routing, dynamic spectrum allocation, scheduling, and transmit power control. Specifically, the algorithm dynamically allocates spectrum resources to maximize the capacity of links without generating harmful interference to other users while guaranteeing a bounded bit error rate (BER) for the receiver. In addition, the algorithm aims to maximize the weighted sum of differential backlogs to stabilize the system by giving priority to higher capacity links with a high differential backlog. The proposed algorithm is distributed, computationally efficient, and has bounded BER guarantees. ROSA is shown through numerical model-based evaluation and discrete-event packet-level simulations to outperform baseline solutions, leading to a high throughput, low delay, and fair bandwidth allocation.


IEEE Transactions on Wireless Communications | 2009

A CDMA-based Medium Access Control for UnderWater Acoustic Sensor Networks

Dario Pompili; Tommaso Melodia; Ian F. Akyildiz

UnderWater Acoustic Sensor Networks (UW-ASNs) consist of sensors and Autonomous Underwater Vehicles (AUVs) performing collaborative monitoring tasks. In this article, UWMAC, a distributed Medium Access Control (MAC) protocol designed for UW-ASNs, is introduced. The proposed MAC protocol is a transmitter-based Code Division Multiple Access (CDMA) scheme that incorporates a novel closed-loop distributed algorithm to jointly set the optimal transmit power and code length. CDMA is the most promising physical layer and multiple access technique for UW-ASNs because it is robust to frequency-selective fading, it compensates for the effect of multipath at the receiver, and it allows receivers to distinguish among signals simultaneously transmitted by multiple devices. UW-MAC aims at achieving three objectives, i.e., guarantee i) high network throughput, ii) low channel access delay, and iii) low energy consumption. It is demonstrated that UW-MAC simultaneously achieves these three objectives in deep water communications (where the ocean depth is more than 100 m), which are usually not severely affected by multipath. In shallow water communications, which may be heavily affected by multipath, it dynamically finds the optimal trade-off among these objectives according to the application requirements. UW-MAC is the first protocol that leverages CDMA properties to achieve multiple access to the scarce underwater bandwidth, while other protocols tailored for this environment have considered CDMA merely from a physical layer perspective. Experiments show that UW-MAC outperforms many existing MAC protocols tuned for the underwater environment under different architecture scenarios and simulation settings.

Collaboration


Dive into the Tommaso Melodia's collaboration.

Top Co-Authors

Avatar

Zhangyu Guan

Northeastern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian F. Akyildiz

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Francesca Cuomo

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott Pudlewski

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Lei Ding

University at Buffalo

View shared research outputs
Top Co-Authors

Avatar

Stefania Colonnese

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge